Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
183 result(s) for "red yeast rice"
Sort by:
Comparative Effect of Bergamot Polyphenolic Fraction and Red Yeast Rice Extract in Rats Fed a Hyperlipidemic Diet: Role of Antioxidant Properties and PCSK9 Expression
Elevated serum cholesterol levels, either associated or not with increased triglycerides, represent a risk of developing vascular injury, mostly leading to atherothrombosis-related diseases including myocardial infarction and stroke. Natural products have been investigated in the last few decades as they are seen to offer an alternative solution to counteract cardiometabolic risk, due to the occurrence of side effects with the use of statins, the leading drugs for treating hyperlipidemias. Red yeast rice (RYR), a monacolin K-rich natural extract, has been found to be effective in counteracting high cholesterol, being its use accompanied by consistent warnings by regulatory authorities based on the potential detrimental responses accompanying its statin-like chemical charcateristics. Here we compared the effects of RYR with those produced by bergamot polyphenolic fraction (BPF), a well-known natural extract proven to be effective in lowering both serum cholesterol and triglycerides in animals fed a hyperlipidemic diet. In particular, BPF at doses of 10 mg/Kg given orally for 30 consecutive days, counteracted the elevation of both serum LDL cholesterol (LDL-C) and triglycerides induced by the hyperlipidemic diet, an effect which was accompanied by significant reductions of malondialdehyde (MDA) and glutathione peroxidase serum levels, two biomarkers of oxidative stress. Furthermore, the activity of BPF was associated to increased HDL cholesterol (HDL-C) levels and to strong reduction of Proprotein convertase subtilisin/kexin type 9 (PCSK9) levels which were found increased in hyperlipidemic rats. In contrast, RYR at doses of 1 and 3 mg/Kg, produced only significant reduction of LDL-C with very poor effects on triglycerides, HDL-C, glutathione peroxidase, MDA and PCSK9 expression. This indicates that while BPF and RYR both produce serum cholesterol-lowering benefits, BPF produces additional effects on triglycerides and HDL cholesterol compared to RYR at the doses used throughout the study. These additional effects of BPF appear to be related to the reduction of PCSK9 expression and to the antioxidant properties of this extract compared to RYR, thereby suggesting a more complete protection from cardiometabolic risk.
Preparation of citrinin-selective molecularly imprinted polymer and its use for on-line solid-phase extraction coupled to liquid chromatography
A new selective molecularly imprinted polymer has been prepared and used for extraction in on-line SPE-HPLC to achieve the selective determination of citrinin. Four different imprinted polymers varying in combinations of components were prepared by bulk polymerization and evaluated in terms of binding capacity and selectivity. Imprinted polymer prepared from a mixture comprising 1-hydoxy-2-naphtoic acid as the template molecule, acrylamide as the structural monomer, ethylene dimethacrylate as the cross-linker (in a molar ratio of 1:4:16), and acetonitrile as the porogenic solvent exhibited the best properties. The selectivity of this sorbent was confirmed by comparison with the non-imprinted counterpart prepared using the same polymerization carried out in the absence of template. Imprinted polymer was packed in a 20 × 3 mm i.d. steel cartridge and coupled to the on-line SPE-HPLC system through a six-port switching valve. The method for determination of citrinin including the on-line extraction step was then developed and validated. The sample in the form of methanolic extract was loaded, cleaned, and preconcentrated in the imprinted SPE cartridge. Subsequent separation of citrinin from residual interferences was achieved using the analytical column Kinetex Biphenyl 100 × 4.6 mm i.d., 5 μm particle size, and fluorescence detection (Ex 335, Em 500 nm). The total analysis time was only 9.50 min. Our fully validated method was also applied to analysis of food supplements based on red yeast rice extracts, the control of which is implemented in European legislation. Only minor yet acceptable contamination was found in tested samples.
Safety and Efficacy of the Consumption of the Nutraceutical “Red Yeast Rice Extract” for the Reduction of Hypercholesterolemia in Humans: A Systematic Review and Meta-Analysis
Previous studies have shown encouraging results regarding the efficacy and safety of nutraceuticals, such as “red yeast rice (RYR) extract”, on reducing hypercholesterolemia in humans. A systematic review and meta-analysis was conducted from January 2012 to May 2022. The search was strictly focused on clinical trials that examined the association between RYR extract consumption and parameters of the lipid profile in humans. Fourteen double-blinded clinical trials were identified. The interventions lasted 4–24 weeks. In most studies, there was one intervention group and one control group. RYR extract consumption statistically significantly reduced total cholesterol (mean absolute reduction: 37.43 mg/dL; 95% confidence interval [CI]: −47.08, −27.79) and low-density lipoprotein cholesterol (LDL-C; mean absolute reduction: 35.82 mg/dL; 95% CI: −43.36, −28.29), but not high-density lipoprotein cholesterol, triglycerides and apolipoproteins A-I and B. As regards the safety, RYR extract was considered a safe choice with neither threatening nor frequent side effects. The consumption of RYR extract by people with hypercholesterolemia was associated with statistically significant reduction in total cholesterol and LDL-C, whereas it was not associated with an increase in life-threatening side effects. Further research on specific subpopulations and outcomes could establish a consensus on determining the clinical benefits and potential risks, if any, of this nutraceutical.
Synthesis of silver nanoparticles from Indian red yeast rice and its inhibition of biofilm in copper metal in cooling water environment
The development of environmentally acceptable benign techniques using purely natural methods is a cost-effective procedure with long-term benefits in all areas. With this consideration, myco synthesized silver nano particles (AgNPs) were studied and it acted as an impending corrosion inhibitor in the environment. Initially, AgNPs were evaluated by physical and surface characterizations and this evidence demonstrated that RYREʼs water-soluble molecules played an essential role in the synthesis of AgNPs in nano spherical size. The myco synthesized of AgNPs has showed an antibacterial activity against corrosive bacteria in cooling water system (CWS). Hence, the AgNPs were used in biocorrosion studies as an anticorrosive agent along with AgNO 3 and RYRE was also checked. For this experiment, the copper (Cu) metal (CW024) which is commonly used was selected, the result of corrosion rate was decreased, and inhibition efficiency (82%) was higher in the presence of AgNPs in system IV. Even though, AgNO 3 and RYRE had contributed significant inhibition efficiency on Cu at 47% and 61%, respectively. According to XRD, the reaction of AgNPs on Cu metal resulted in the formation of a protective coating of Fe 2 O 3 against corrosion. EIS data also indicated that it could reduce the corrosion on the Cu metal surface. All of these findings point out the possibility that the myco-synthesized AgNPs were an effective copper metal corrosion inhibitor. As a result, we encourage the development of myco-synthesized AgNPs, which could be useful in the industrial settings. Graphical abstract
Red yeast rice fermentation with Bacillus subtilis B2 under blue light-emitting diodes increases antioxidant secondary products (Manuscript ID: BPBSE-18-0387)
Light and bacteria can be used in combination to enhance secondary metabolite production during fermentation. Red yeast rice powder (RYRP) was inoculated with Bacillus subtilis (B2) isolated from freshwater seafood and incubated under light-emitting diodes (LEDs) of different colors (blue, green, red, white), fluorescent white light, and in darkness. Blue LED-mediated fermentation with B2 significantly enhanced production of phenolic compounds (68.4 ± 1 mg GAE/g DW) and flavonoids (51.7 ± 1 mg QE/g DW) compared to white light and darkness. Total antioxidant activity of RYRP extract after fermentation with B2 was > 77%; hydroxyl radical and superoxide scavenging were > 66%. DPPH (2,2-diphenyl-1-picryl-hydrazyl-hydrate) and ABTS (2,2′-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid)) radical scavenging activities were 51% and > 67%, respectively. Reducing power was approximately twice that of extract from RYRP without B2. FTIR analysis showed a high content of hydroxyl, nitrile and carboxylic groups in the extract. Derivatives of cinnamic, benzoic and phophinodithioic acid, and quinazolinone were identified by GC–MS. Findings show that fermenting RYRP with B. subtilis B2 under blue LEDs enhances production of secondary metabolites, which should have applications in industrial fermentation processes.
A Review of Red Yeast Rice, a Traditional Fermented Food in Japan and East Asia: Its Characteristic Ingredients and Application in the Maintenance and Improvement of Health in Lipid Metabolism and the Circulatory System
Red yeast rice has been used to produce alcoholic beverages and various fermented foods in China and Korea since ancient times; it has also been used to produce tofuyo (Okinawan-style fermented tofu) in Japan since the 18th century. Recently, monacolin K (lovastatin) which has cholesterol-lowering effects, was found in some strains of Monascus fungi. Since statins have been used world-wide as a cholesterol-lowering agent, processed foods containing natural statins are drawing attention as materials for primary prevention of life-style related diseases. In recent years, large-scale commercial production of red yeast rice using traditional solid-state fermentation has become possible, and various useful materials, including a variety of monascus pigments (polyketides) that spread as natural pigments, in addition to statins, are produced in the fermentation process. Red yeast rice has a lot of potential as a medicinal food. In this paper, we describe the history of red yeast rice as food, especially in Japan and East Asia, its production methods, use, and the ingredients with pharmacological activity. We then review evidence of the beneficial effects of red yeast rice in improving lipid metabolism and the circulatory system and its safety as a functional food.
Mechanism of puberulic acid contamination in red yeast rice tablets that caused a serious food poisoning outbreak in Japan
In Japan, serious food poisoning among individuals who took supplement tablets for lowering plasma cholesterol levels have been publicized since late March 2024. The tablets were prepared from red yeast rice (RYR), a product of Monascus pilosus. Puberulic acid (PA) was detected as an unexpected compound in tablets that caused food poisoning. We conducted an on-site investigation at the RYR production factory to determine the cause of PA contamination of the tablets. Fungi capable of producing PA were detected in wipe samples from the factory and were identified as Penicillium adametzioides. To understand the route through which P. adametzioides contaminated RYR and produced PA, coculture experiments with M. pilosus and P. adametzioides were performed. P. adametzioides grew on rice covered with M. pilosus and produced PA. These results suggest that PA-producing P. adametzioides inhabited the RYR production factory and accidently contaminated the culture of M. pilosus. Consequently, RYR tablets contaminated with PA were manufactured and caused the food poisoning outbreak.
Monascus secondary metabolites: production and biological activity
The genus Monascus, comprising nine species, can reproduce either vegetatively with filaments and conidia or sexually by the formation of ascospores. The most well-known species of genus Monascus, namely, M. purpureus, M. ruber and M. pilosus, are often used for rice fermentation to produce red yeast rice, a special product used either for food coloring or as a food supplement with positive effects on human health. The colored appearance (red, orange or yellow) of Monascus-fermented substrates is produced by a mixture of oligoketide pigments that are synthesized by a combination of polyketide and fatty acid synthases. The major pigments consist of pairs of yellow (ankaflavin and monascin), orange (rubropunctatin and monascorubrin) and red (rubropunctamine and monascorubramine) compounds; however, more than 20 other colored products have recently been isolated from fermented rice or culture media. In addition to pigments, a group of monacolin substances and the mycotoxin citrinin can be produced by Monascus. Various non-specific biological activities (antimicrobial, antitumor, immunomodulative and others) of these pigmented compounds are, at least partly, ascribed to their reaction with amino group-containing compounds, i.e. amino acids, proteins or nucleic acids. Monacolins, in the form of β-hydroxy acids, inhibit hydroxymethylglutaryl-coenzyme A reductase, a key enzyme in cholesterol biosynthesis in animals and humans.
Evaluation of NaTto Red Yeast Rice on Regulating Blood Lipid (ENTRY) Study: A Multicenter, Double‐Placebo, Double‐Blinded, Randomized Controlled Trial in Chinese Adults
ABSTRACT Background Statins are the first line of treatment for dyslipidemia, but their side effects often reduce medication compliance. Natto and red yeast rice are natural ingredients with lipid‐lowering effects. However, the efficacy of Natto Red Yeast Rice (NRYR) supplement in combination with statins in regulating blood lipid levels has not been fully evaluated. Methods A multicenter, double‐blinded, randomized‐controlled trial was conducted among individuals with low‐density lipoprotein cholesterol (LDL‐C) of 3.4 to 5.0 mmol/L at six sites in China, of those at moderate risk of cardiovascular disease (CVD) are prioritized. Participants are enrolled and randomly assigned into four groups by a combination of NRYR (or its placebo) and Simvastatin (or its placebo) in a ratio of 1:1:1:1. After examination at baseline, all participants underwent intervention for 3 months and two follow‐up visits at 1 month and 3 months after the intervention. The primary outcome is the change in LDL‐C level at 3 months, and secondary outcomes include changes in levels of other lipid profiles and biomarkers, as well as calculated 10‐year CVD risk. A total of 1136 participants were randomly assigned, of whom 1110 received the intervention. Discussion This study may provide new evidence for the efficacy of NRYR supplement in combination with statins to regulate lipid levels and optimize lipid management. Trial Registration Chinese Clinical Trial Registry database: registration nos. ChiCTR2200064214, ChiCTR2200064215. Study flow chart of the ENTRY study. Summary The control rate of dyslipidemia is not satisfactory in Chinese population, and whether dietary supplements may improve the management of blood lipids is unclear. The present study aims to evaluate the efficacy of Natto Red Yeast Rice (NRYR) supplement in combination with statins in regulating blood lipids, especially in individuals with mild or moderate elevated cholesterol levels using a multicenter, double‐blind, randomized parallel‐controlled trial. This study may provide evidence on the potential role of NRYR supplement in regulation of lipid levels and management of dyslipidemia.
Red Yeast Rice for the Improvement of Lipid Profiles in Mild-to-Moderate Hypercholesterolemia: A Narrative Review
Reducing low-density lipoprotein cholesterol (LDL-C) levels is a key target for lowering cardiovascular risk and preventing atherosclerotic cardiovascular disease (ASCVD). Red yeast rice (RYR) is a nutraceutical widely used as a lipid-lowering dietary supplement. The main cholesterol-lowering components of RYR are monacolins, particularly monacolin K, which is structurally identical to lovastatin and targets the same key enzyme of cholesterol biosynthesis. RYR supplementation reduces LDL-C levels by approximately 15–34% versus placebo, with a similar effect to low-dose, first-generation statins in subjects with mild-to-moderate dyslipidemia. RYR has also demonstrated beneficial reductions of up to 45% versus placebo in the risk of ASCVD events in secondary prevention studies. RYR at a dose that provides about 3 mg/d of monacolin K is well tolerated, with an adverse event profile similar to that of low-dose statins. RYR is therefore a treatment option for lowering LDL-C levels and ASCVD risk for people with mild-to-moderate hypercholesterolemia who are ineligible for statin therapy, particularly those who are unable to implement lifestyle modifications, and also for people who are eligible for statin therapy but who are unwilling to take a pharmacologic therapy.