Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
56,891
result(s) for
"residue"
Sort by:
Guidance for reporting the 2026 national control plans for veterinary medicinal product residues
2025
This document should be used for the reporting of samples planned under the national control plans for residues of veterinary medicinal products to EFSA. It provides guidance on how to use the data model for submission to the EU of such data and related information.
Journal Article
Guidance for reporting the 2025 national control plans for Veterinary Medicinal Product Residues
2024
This document should be used for reporting to EFSA samples planned under the national control plans for residues of veterinary medicinal product. It provides guidance on how to use the data model for submission to the EU of such data and related information.
Journal Article
Crop Residue Burning in India: Policy Challenges and Potential Solutions
by
Hettiarachchi, Hiroshan
,
Meegoda, Jay N.
,
Bhuvaneshwari, S.
in
Agribusiness
,
Agricultural pollution
,
Agriculture
2019
India, the second largest agro-based economy with year-round crop cultivation, generates a large amount of agricultural waste, including crop residues. In the absence of adequate sustainable management practices, approximately 92 seems a very small number of metric tons of crop waste is burned every year in India, causing excessive particulate matter emissions and air pollution. Crop residue burning has become a major environmental problem causing health issues as well as contributing to global warming. Composting, biochar production and mechanization are a few effective sustainable techniques that can help to curtail the issue while retaining the nutrients present in the crop residue in the soil. The government of India has attempted to curtail this problem, through numerous measures and campaigns designed to promote sustainable management methods such as converting crop residue into energy. However, the alarming rise of air pollution levels caused by crop residue burning in the city of Delhi and other northern areas in India observed in recent years, especially in and after the year of 2015, suggest that the issues is not yet under control. The solution to crop residue burning lies in the effective implementation of sustainable management practices with Government interventions and policies. This manuscript addresses the underlying technical as well as policy issues that has prevented India from achieving a long-lasting solution and also potential solutions that have been overlooked. However, effective implementation of these techniques also requires us to look at other socioeconomic aspects that had not been considered. This manuscript also discusses some of the policy considerations and functionality based on the analyses and current practices. The agricultural waste sector can benefit immensely from some of the examples from other waste sectors such as the municipal solid waste (MSW) and wastewater management where collection, segregation, recycling and disposal are institutionalized to secure an operational system. Active stakeholder involvement including education and empowerment of farmers along with technical solutions and product manufacturing can also assist tremendously. Even though the issue of crop residue burning touches many sectors, such as environment, agriculture, economy, social aspects, education, and energy, the past governmental efforts mainly revolved around agriculture and energy. This sectorial thinking is another barrier that needs to be broken. The government of India as well as governments of other developing countries can benefit from the emerging concept of nexus thinking in managing environmental resources. Nexus thinking promotes a higher-level integration and higher level of stakeholder involvement that goes beyond the disciplinary boundaries, providing a supporting platform to solve issues such as crop residue burning.
Journal Article
Different contributions of microbial and plant residues to soil organic carbon accumulation during planted forest and abandoned farmland restoration, Loess Plateau, China
by
Wang, Xingbo
,
Sailike, Ahejiang
,
Yu, Zhouchang
in
abandoned land
,
Accumulation
,
Agricultural land
2025
Aims
Plant and microbial residues are the primary drivers mediating soil organic carbon (SOC) accumulation in terrestrial ecosystems. However, how plant residues and microbial residues affect SOC accumulation and the underlying mechanisms remain poorly understood, especially in the succession process of different vegetation types.
Methods
In this study, grasslands (GL) and
Robinia pseudoacacia
plantations (RP) restored for 10, 20, 30, and 40 years were used as research subjects on the Loess Plateau, and farmland was used as a control. Several indicators of soil physicochemical and plant characteristics, enzyme activity, amino sugar, lignin phenols were measured.
Results
The results indicated that the contents of microbial and plant residue carbon in GL and RP increased with the increasing restoration years. However, the contribution of plant residue carbon to the SOC in GL and RP gradually decreased, while microbial residue carbon showed the opposite trend. In contrast, microbial residues were the main contributor to SOC in GL (62.8–75.1%), while plant residues were the main contributor to SOC in RP (47.2–58.3%). There was a difference in the bacterial and fungal residue carbon contribution to SOC between GL and RP. In GL, the dominant contributor to SOC changed from bacterial (47.7–37.2%) to fungal residues (15.1–37.9%). But in RP, it has always been dominated by fungal residue carbon (17.4–33.3%).
Conclusions
More SOC accumulated in GL and RP in the form of microbial and plant residue carbon, respectively. In GL and RP, the contribution of carbon from fungal residues increased with the increase of recovery years. Overall, our research not only contributes to understanding the complexity of the carbon cycle in ecosystems, but also provides a valuable scientific basis for the management of soil carbon pools in different vegetation types under climate change.
Journal Article
Widespread Occurrence of Chemical Residues in Beehive Matrices from Apiaries Located in Different Landscapes of Western France
2013
The honey bee, Apis mellifera, is frequently used as a sentinel to monitor environmental pollution. In parallel, general weakening and unprecedented colony losses have been reported in Europe and the USA, and many factors are suspected to play a central role in these problems, including infection by pathogens, nutritional stress and pesticide poisoning. Honey bee, honey and pollen samples collected from eighteen apiaries of western France from four different landscape contexts during four different periods in 2008 and in 2009 were analyzed to evaluate the presence of pesticides and veterinary drug residues.
A multi-residue analysis of 80 compounds was performed using a modified QuEChERS method, followed by GC-ToF and LC-MS/MS. The analysis revealed that 95.7%, 72.3% and 58.6% of the honey, honey bee and pollen samples, respectively, were contaminated by at least one compound. The frequency of detection was higher in the honey samples (n = 28) than in the pollen (n = 23) or honey bee (n = 20) samples, but the highest concentrations were found in pollen. Although most compounds were rarely found, some of the contaminants reached high concentrations that might lead to adverse effects on bee health. The three most frequent residues were the widely used fungicide carbendazim and two acaricides, amitraz and coumaphos, that are used by beekeepers to control Varroa destructor. Apiaries in rural-cultivated landscapes were more contaminated than those in other landscape contexts, but the differences were not significant. The contamination of the different matrices was shown to be higher in early spring than in all other periods.
Honey bees, honeys and pollens are appropriate sentinels for monitoring pesticide and veterinary drug environmental pollution. This study revealed the widespread occurrence of multiple residues in beehive matrices and suggests a potential issue with the effects of these residues alone or in combination on honey bee health.
Journal Article
Antibiotic residues in milk: Past, present, and future
2019
Now-a-days, various types of antibiotics are being used worldwide in veterinary sector indiscriminately for promotion of growth and treatment of the livestock. Significant portions of antibiotics are released through milk of dairy animals unaltered and exert serious harmful effects on human health. This review evaluates and compare researches on antibiotic residues in milk in published literatures from Pubmed, CrossRef, CAB direct, DOAJ, JournalTOCs, AGRICOLA, ScientificGate, Electronic Journals Library, CAB abstracts, Global Health Databases, Global Impact Factor, Google Scholar, Park Directory of Open Access Journals, BanglaJOL and ISC E-Journals. Antibiotics residue in milk was first detected in 60s and then with an increasing trend with highest after 2,000 (188). The highest no. of works, 49 (21.87%) were accomplished in China, followed by Spain, 30 (13.39%); Germany, 11 (4.91%); and USA, 10 (4.46%). Continent-wise highest researches are published from Europe, 105 (46.88%), followed by Asia, 77 (34.38%); South America, 18 (8.04%); North America, 16 (7.14%); and Africa, 8 (3.57%). For detection, Bovine milk sample is mostly used, 193 (86.16%), followed by ovine, 19 (8.48%); and caprine, 14 (6.25%). Acetonitrile was used in maximum cases (77) for processing the samples. Chromatographic technique was the highest, 115 (51.34%) for detection. Residue of ß-lactam group have been detected mostly 133 (36.54%), followed by tetracyclines, 51 (14.01%); fluoroquinolones, 49 (13.46%); sulfonamides, 46 (12.64%); and aminoglycosides, 38 (10.44%). This review observe that antibiotics residues are more common in milk samples that are being manifested in increasing researches on antibiotic detection and measures should adopt to cease this residue.
Journal Article
A field realistic model to assess the effects of pesticides residues and adulterants on honey bee gene expression
by
de Graaf, Dirk C.
,
Saegerman, Claude
,
Scippo, Marie-Louise
in
Adulterants
,
Animals
,
Apis mellifera
2024
While studies on the sublethal effects of chemical residues in beeswax on adult honey bees are increasing, the study protocols assessing the impacts on honey bee brood in realistic conditions still need to be investigated. Moreover, little is known about the residue’s effect on gene expression in honey bee brood. This study reports the effects of chlorpyriphos-ethyl, acrinathrin and stearin worker pupae exposure through contaminated or adulterated beeswax on the gene expression of some key health indicators, using a novel in vivo realistic model. Larvae were reared in acrinathrin (12.5, 25, 10 and 100 ppb) and chlorpyriphos-ethyl (5, 10, 500 and 5000 ppb) contaminated or stearin adulterated beeswax (3, 4, 5, 6 and 9%) in newly formed colonies to reduce the influence of external factors. On day 11, mortality rates were assessed. Honey bee pupae were extracted from the comb after 19 days of rearing and were analysed for the gene expression profile of four genes involved in the immune response to pathogens and environmental stress factors ( Imd , dorsal , domeless and defensin ), and two genes involved in detoxifications mechanisms (CYP6AS14 and CYP9Q3). We found no linear relation between the increase in the pesticide concentrations and the brood mortality rates, unlike stearin where an increase in stearin percentage led to an exponential increase in brood mortality. The immune system of pupae raised in acrinathrin contaminated wax was triggered and the expression of CYP6AS14 was significantly upregulated (exposure to 12.5 and 25 ppb). Almost all expression levels of the tested immune and detoxification genes were down-regulated when pupae were exposed to chlorpyrifos-contaminated wax. The exposure to stearin triggered the immune system and detoxification system of the pupae. The identification of substance-specific response factors might ultimately serve to identify molecules that are safer for bees and the ecosystem’s health.
Journal Article
E4F1 coordinates pyruvate metabolism and the activity of the elongator complex to ensure translation fidelity during brain development
by
Institut des Neurosciences de Montpellier (INM) ; Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Montpellier (UM)
,
de Blasio, Carlo
,
Ango, Fabrice
in
13/1
,
13/51
,
14/1
2025
Pyruvate metabolism defects lead to severe neuropathies such as the Leigh syndrome (LS) but the molecular mechanisms underlying neuronal cell death remain poorly understood. Here, we unravel a connection between pyruvate metabolism and the regulation of the epitranscriptome that plays an essential role during brain development. Using genetically engineered mouse model and primary neuronal cells, we identify the transcription factor E4F1 as a key coordinator of AcetylCoenzyme A (AcCoA) production by the pyruvate dehydrogenase complex (PDC) and its utilization as an essential co-factor by the Elongator complex to acetylate tRNAs at the wobble position uridine 34 (U 34 ). E4F1-mediated direct transcriptional regulation of Dlat and Elp3, two genes encoding key subunits of the PDC and of the Elongator complex, respectively, ensures proper translation fidelity and cell survival in the central nervous system (CNS) during mouse embryonic development. Furthermore, analysis of PDH-deficient cells highlight a crosstalk linking the PDC to ELP3 expression that is perturbed in LS patients.
Journal Article
2D leaf-like ZIF-L decorated with multi-walled carbon nanotubes as electrochemical sensing platform for sensitively detecting thiabendazole pesticide residues in fruit samples
2021
Excessive use of pesticides in modern agriculture results in large amounts of pesticide residues in agricultural production, greatly threatening human health. Herein, novel two-dimensional leaf-like zeolitic imidazolate framework-L decorated with multi-walled carbon nanotubes (MWCNTs/ZIF-L) was prepared by a facile solvent way and exploited as electrode material for sensitive electrochemical sensing of thiabendazole (TBZ). Two-dimensional ZIF-L presents high surface area, large pore volume, and abundant active sites, which exhibits high enrichment ability towards TBZ molecules, while the MWCNTs interspersed on ZIF-L can prominently enhance the electron transport capability and improve the electrocatalytic activity for TBZ oxidation. Due to the intriguing synergy between the components, the MWCNTs/ZIF-L-based electrochemical sensor reveals a limit of detection (LOD) of 6.0 nmol·L−1, which is lower than that reported in most literatures. Additionally, satisfactory reproducibility and repeatability, long-term stability, and excellent selectivity are acquired. The proposed method was also applied for the detection of TBZ in apple and orange samples with acceptable recoveries.
Journal Article