Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
8,254
result(s) for
"response surface design"
Sort by:
Finding the right mix
by
Yvoz, Séverin
,
Cordeau, Stéphane
,
Mirsky, Steven B.
in
Agricultural practices
,
Biomass
,
Cenchrus americanus
2022
Cover crop mixtures have the potential to provide more ecosystem services than cover crop monocultures. However, seeding rates that are typically recommended (i.e. seeding rate of monoculture divided by the number of species in the mixture) are non-optimized and often result in the competitive species dominating the mixture, and therefore limiting the amount of ecosystem services that are provided. We created an analytical framework for selecting seeding rates for cover crop mixtures that maximize multifunctionality while minimizing seed costs. The framework was developed using data from a field experiment, which included six response surface designs of two-species mixtures, as well as a factorial replacement design of three-species and four-species mixtures. We quantified intraspecific and interspecific competition among two grasses and two legume cover crop species with grass and legume representing two functional groups: pearl millet [Pennisetum glaucum (L.) R. Br.], sorghum sudangrass [Sorghum bicolor (L.) Moench × Sorghum sudanense (Piper) Stapf], sunn hemp (Crotalaria juncea L.), and cowpea [Vigna unguiculata (L.) Walp]. Yield–density models were fit to estimate intraspecific and interspecific competition coefficients for each species in biculture. The hierarchy from most to least competitive was sorghum sudangrass > sunn hemp > pearl millet > cowpea. Intraspecific competition of a less competitive species was the greatest when the biculture was composed of two species in the same functional group. Competition coefficients were used to build models that estimated the biomass of each cover crop species in three-species and four-species mixtures. The competition coefficients and models were validated with an additional nine site-years testing the same cover crop mixtures. The biomass of a species in a site-year was accurately predicted 69% of the time (low root mean square error, correlation > 0.5, not biased, r² > 0.5). Applying the framework, we designed three-species and four-species mixtures by identifying relative seeding rates that produced high biomass with high species evenness (i.e. high multifunctionality) at low seed costs based on a Pareto front analysis of 10,418 mixtures. Accounting for competition when constructing cover crop mixtures can improve the ecosystem services provided, and such an advancement is likely to lead to greater farmer adoption.
Journal Article
The Optimum Production Method for Quality Improvement of Recycled Aggregates Using Sulfuric Acid and the Abrasion Method
2016
There has been increased deconstruction and demolition of reinforced concrete structures due to the aging of the structures and redevelopment of urban areas resulting in the generation of massive amounts of construction. The production volume of waste concrete is projected to increase rapidly over 100 million tons by 2020. However, due to the high cement paste content, recycled aggregates have low density and high absorption ratio. They are mostly used for land reclamation purposes with low added value instead of multiple approaches. This study was performed to determine an effective method to remove cement paste from recycled aggregates by using the abrasion and substituting the process water with acidic water. The aim of this study is to analyze the quality of the recycled fine aggregates produced by a complex method and investigate the optimum manufacturing conditions for recycled fine aggregates based on the design of experiment. The experimental parameters considered were water ratio, coarse aggregate ratio, and abrasion time and, as a result of the experiment, data concerning the properties of recycled sand were obtained. It was found that high-quality recycled fine aggregates can be obtained with 8.57 min of abrasion-crusher time and a recycled coarse aggregate ratio of over 1.5.
Journal Article
Rheological Properties and Modification Mechanism of Emulsified Asphalt Modified with Waterborne Epoxy/Polyurethan Composite
2024
In research aimed at improving the brittleness of WER (waterborne epoxy)-modified emulsified asphalt, commonly encountered issues are that the low-temperature performance of this type of asphalt becomes insufficient and the long curing time leads to low early strength. Matrix-emulsified asphalt was modified with WPU (waterborne polyurethane), WER, and DMP-30 (accelerator). Firstly, the performance changes of modified emulsified asphalt at different single-factor dosages were explored through conventional performance tests and assessments of its adhesion, tensile properties, and curing time. Secondly, based on a response surface methodology test design, the material composition of the composite-modified emulsified asphalt was optimized, and its rheological properties were analyzed by a DSR test and a force–ductility test. Finally, the modification mechanism was explored by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The results show that WER can improve the adhesion strength of modified emulsified asphalt and greatly reduce elongation at break. WPU can effectively improve the elongation at break of composite-modified emulsified asphalt, but it has a negative impact on adhesion strength. DMP-30 mainly affects the curing time of modified emulsified asphalt; EPD (composite modification) can effectively improve the high-temperature rutting resistance of matrix-emulsified asphalt, and its low-temperature performance is significantly improved compared with WER-modified emulsified asphalt. The EPD modification process mainly consists of physical blending. In the case of increasing the curing rate, it is recommended that the contents of WER and WPU be lower than 10% and 6%, respectively, to achieve excellent comprehensive performance of the composite modification.
Journal Article
A Class of Three-Level Designs for Definitive Screening in the Presence of Second-Order Effects
2011
Screening designs are attractive for assessing the relative impact of a large number of factors on a response of interest. Experimenters often prefer quantitative factors with three levels over two-level factors because having three levels allows for some assessment of curvature in the factor-response relationship. Yet, the most familiar screening designs limit each factor to only two levels. We propose a new class of designs that have three levels, provide estimates of main effects that are unbiased by any second-order effect, require only one more than twice as many runs as there are factors, and avoid confounding of any pair of second-order effects. Moreover, for designs having six factors or more, our designs allow for the efficient estimation of the full quadratic model in any three factors. In this respect, our designs may render follow-up experiments unnecessary in many situations, thereby increasing the efficiency of the entire experimentation process. We also provide an algorithm for design construction.
Journal Article
Response Surface Methodology Optimization of Time-Resolved Fluorescence Immunoassay for Rapid Detection of AflatoxinB1 in Yellow Rice Wine
2025
Yellow rice wine is susceptible to aflatoxinB1 (AFB1) contamination, yet existing detection technologies suffer from limitations such as high false-positive rates, cumbersome operational protocols, or elevated costs, rendering them inadequate for large-scale screening requirements. Consequently, the development of a highly sensitive and rapid detection method for AFB1 is urgently needed to provide technical support for quality supervision and risk assessment of yellow rice wine. In this study, AFB1 detection was performed using time-resolved fluorescence immunoassay technology, with quantitative analysis based on the ratio of the T signal value of the detection line to the C signal value of the quality control line and the natural logarithmic value of the standard solution concentration. Statistical experimental designs were used to optimize the process of this rapid detection of AFB1 in yellow rice wine. The most important factors influencing recovery rate (p < 0.05), as identified by a two-level Plackett-Burman design with 11 variables, were methanol-water volume fraction, sample to extraction solvent ratio, heating temperature, and heating time. The steepest ascent method was employed to identify the optimal regions for these four key factors. Central composite design (CCD) coupled with response surface methodology (RSM) was subsequently utilized to further explore the interactive effects among variables and determine their optimal values that maximize the recovery rate. The analysis results indicated that interactions between methanol-water volume fraction and other three factors–sample to extraction solvent ratio, heating temperature, heating time–affected the response variable (recovery rate) significantly. The predicted results showed that the maximum recovery rate of AFB1 (97.35%) could be obtained under the optimum conditions of a methanol-water volume fraction of 78%, a sample to extraction solvent ratio of 1:3.2, a heating temperature of 34 °C, and a heating time of 6.4 min. These predicted values were further verified by validation experiments. The excellent correlation between predicted and experimental values confirmed the validity and practicability of this statistical optimum strategy. Optimal conditions obtained in this experiment laid a good foundation for further use of time-resolved fluorescence immunoassay for rapid detection of AFB1 in yellow rice wine, demonstrating broad application prospects.
Journal Article
Real-Time Sensing of Output Polymer Flow Temperature and Volumetric Flowrate in Fused Filament Fabrication Process
2022
In this paper we addressed key challenges in engineering an instrumentation system for sensing and signal processing for real-time estimation of two main process variables in the Fused-Filament-Fabrication process: (i) temperature of the polymer melt exiting the nozzle using a thermocouple; and (ii) polymer flowrate using extrusion width measurements in real-time, in-situ, using a microscope camera. We used a design of experiments approach to develop response surface models for two materials that enable accurate estimation of the polymer exit temperature as a function of polymer flowrate and liquefier temperature with a fit of R2=99.96% and 99.39%. The live video stream of the deposition process was used to compute the flowrate based on a road geometry model. Specifically, a robust extrusion width recognizer REXR algorithm was developed to identify edges of the deposited road and for real-time computation of extrusion width, which was found to be robust to filament colors and materials. The extrusion width measurement was found to be within 0.08 mm of caliper measurements with an R2 value of 99.91% and was found to closely track the requested flowrate from the slicer. This opens new avenues for advancing the engineering science for process monitoring and control of FFF.
Journal Article
Preparation of Self-microemulsion Solids of Kaempferia galanga (L.) Volatile Oil and Its Effect on Rats with Gastric Ulcer
2023
Kaempferia galanga
volatile oil (KVO), the main effective component of the medicinal plant
Kaempferia galanga
L., possesses a variety of pharmacological activities such as anti-inflammatory, antioxidant, and anti-angiogenic activities and has therapeutic potential for gastric ulcer (GU). However, poor solubility as well as instability limits the clinical application of KVO. In this study,
K. galanga
volatile oil self-microemulsion solids (KVO-SSMEDDS) were prepared to improve its bioavailability and stability, and the therapeutic effects were evaluated in a rat model with GU. The ratio of oil phase, emulsifier, and co-emulsifier in the KVO-SMEDDS prescription were optimized by plotting the pseudo-ternary phase diagram with the star point design-response surface method. Based on the optimal prescription, self-microemulsifying drug delivery system (SMEDDS) was prepared as solid particles (S-SMEDDS). The prepared KVO-SSMEDDS had a rounded and non-adhesive appearance, formed an O/W emulsion after dissolution in water, and had a uniform particle size distribution with good stability and solubility. It was administered to GU model animals, and the results showed that a certain dose of KVO-SSMEDDS solution could increase the content of gastric mucosal protective factors PGE2, TGF-α, and EGF in gastric tissues and serum, and the expression of inflammatory factors IL-8 and TNF-α was downregulated. Meanwhile, the expression of the NF-κB/COX-2 pathway proteins was inhibited. In conclusion, the prepared KVO-SSMEDDS has good dispersion, solubility, and stability and has a therapeutic effect on rats with GU.
Graphical Abstract
Journal Article
Ultrasound-assisted ionic liquids extraction of carotenoids from Xinjiang apricots and evaluation of their antioxidant potential
2025
Xinjiang apricot is favoured by consumers because of its distinctive aroma, high nutritive value, and abundant functional active substances. Carotenoids of apricot are efficient antioxidants that can protect the human body from free radical attack. However, the extraction, quantification, and antioxidant activity of carotenoids from Xinjiang apricots have not been reported. In this work, ultrasound-assisted ionic liquid (ILs) extraction and optimisation of carotenoids from Xinjiang apricots and to evaluate their antioxidant potential. Based on Box–Behnken design (BBD), the best conditions were IL/ethanol (RIL/E) ratio of 1 : 2, solid-liquid ratio (RS/L) of 1 : 3, extraction time of 17 min and number of extractions of 3. The content of carotenoid extracted by ultrasonic-assisted [Bmim][BF4] ILs was 32.98 ± 0.27 μg·g–1 that of traditional extraction method was 25.05 ± 0.35 μg·g–1. Moreover, ultrasonic-assisted ILs extraction technology can shorten the extraction time, simplify the extraction steps and increase the extraction amount. Meanwhile, in order to recover and reuse ILs, ILs-ethanolic solution was frozen at temperatures lower than –80 °C, allowing the ILs precipitation and separation from the ethanol solution. Meantime, the antioxidant potential of five Xinjiang apricot varieties were evaluated by DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS [2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)] assays in vitro and analysed by UV–vis spectroscopy and Raman spectroscopy. The results showed Shushanggan apricot has the highest carotenoid content and the strongest antioxidant activity. In conclusion, this research further proves the advantage of ultrasonic-assisted ILs in carotenoid extraction and the potential to obtain valuable carotenoids from the apricot industries.
Journal Article
Using chemometric models to predict the biosorption of low levels of dysprosium by Euglena gracilis
by
Guéguen, Céline
,
Lewis, Ainsely
in
Acid mine drainage
,
analysis of variance
,
Anthropogenic factors
2022
The critical rare earth element dysprosium (Dy) is integral for sustainable technologies. What is concerning is that Dy is in imminent short supply and no current replacements yet exist, coupled with increasing environmental Dy levels influenced by anthropogenic activities. This study applies chemometric methods such as response surface methodology and artificial neural networks to predict low Dy removal levels using the biosorbent
Euglena gracilis
. A three-factor Box-Behnken experimental design was conducted with initial concentration (1 to 100 µg L
−1
), contact time (30 to 180 min), and pH (3 to 8) as the three independent variables, and percentage removal and sorption capacity (
q
) as dependent variables. Using Dy percentage removal as response, for the worst and best conditions ranged from 0 to 92% respectively, with an average removal of 66 ± 4%. Using sorption capacity (
q
) as a different response variable,
q
varied from 0 to 93 µg/g with 27 ± 4 µg/g capacity as average. Maximum removal was 92% (
q
= 93 µg/g) was at pH 3, a contact time of 105 min and at a concentration of 100 µg/L. Using sorption capacity as the response variable for ANOVA, pH and metal concentrations were statistically significant factors, with lower pH and higher metal concentration having improved Dy removal, with a desirability near 1. Statistical tests such as analysis of variance, lack-of-fit, and coefficient of determination (
R
2
) confirmed model validity. A 3–10-1 ANN network array was used to model experimental responses (
q
). RSM and ANN effectively modeled Dy biosorption.
E. gracilis
proved to be a cheap and effective biosorbent for Dy biosorption and has the potential to remediate acid mine drainage areas exhibiting low Dy concentrations.
Journal Article
The preparation and relative bioavailability of an artemisin in self-emulsifying drug delivery system
2023
The aim of this study is to demonstrate a method for improving the solubility and relative bioavailability of artemisinin using a self-emulsifying drug delivery system (SEDDS). The self-emulsifying drug load, solubility, and emulsifying time were used as the evaluation indices, based on a solubility test and a ternary phase diagram. Optimal Mixture Design in Design-Expert software was used to optimize the prescription of the artemisinin SEDDS. By determining the water distribution coefficient in vitro, combined with the drug concentration-time curve in vivo, a comparison was made of the relative oral bioavailability of the artemisinin SEDDS and the crude drug. The optimal prescription ratio of oleic acid polyethylene glycol glyceride, polyoxyethylene hydrogenated castor oil, and diethylene glycol monoethyl ether in the artemisinin SEDDS was 0.5:0.2:0.3 (wt/wt/wt), with a drug loading capacity of 41.556 mg/g, a solubility of 1.997 mg/mL, and a self-emulsification time of 214 s. The optimal prescription was transparent, slightly yellow, and oil-like. The average loading capacity of artemisinin was 41.912 mg/g, the emulsification time was 231 s, the average particle size was 128.0 nm, the average Zeta potential was -4.29 mV, and the solubility of artemisinin SEDDS in water was 1.997 mg mL
-1
. It is 33.85 times of the solubility of artemisinin in water, which achieves the purpose of increasing the solubility of artemisinin. The comparison of the oil/water distribution coefficient of the artemisinin SEDDS with that of the crude drug in vitro showed that SEDDS could improve the permeability of artemisinin and promote the absorption in vivo, and the relative bioavailability of the SEDDS agent was at least 1.47 times higher than that of the crude drug. The artemisinin SEDDS could significantly improve the solubility and relative bioavailability of artemisinin.
Journal Article