Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
860
result(s) for
"retrotransposon element"
Sort by:
Extracellular vesicles as trans‐genomic agents: Emerging roles in disease and evolution
by
Kawamura, Yumi
,
Yamamoto, Yusuke
,
Sato, Taka‐Aki
in
Biosynthesis
,
Cancer
,
Cancer microenvironment
2017
The composition of genetic material in extracellular vesicles (EV) has sparked interest particularly in the potential for horizontal gene transfer by EV. Although the RNA content of EV has been studied extensively, few reports have examined the DNA content of EV. It is still unclear how DNA is packaged inside EV, and whether they are functional in recipient cells. In this review, we describe the biological significance of genetic material in EV and their possible impacts in recipient cells, with focus on DNA from cancer cell‐derived EV and the potential roles they may play in the cancer microenvironment. Another important feature of the genetic content of EV is the presence of retrotransposon elements. In this review, we discuss the possibility of an EV‐mediated mechanism for the dispersal of retrotransposon elements, and their potential involvement in the development of genetically influenced diseases. In addition to this, we discuss the potential involvement of EV in the transfer of genetic material across species, and their possible impacts in modulating genome evolution. In this review paper, we describe the biological significance of genetic material in extracellular vesicles (EVs), with particular focus on the EV‐mediated transfer of DNA and retrotransposon elements. We describe the functional impacts of horizontal gene transfer by EVs in the development of genetically influenced diseases such as cancer and neurodegenerative diseases. We also discuss the potential involvement of EVs in the transfer of retrotransposon elements across species, and their potential impacts in genome modulation in evolution.
Journal Article
The Hairless Stem Phenotype of Cotton ( Gossypium barbadense ) Is Linked to a Copia -Like Retrotransposon Insertion in a Homeodomain-Leucine Zipper Gene ( HD1 )
2015
Cotton (Gossypium) stem trichomes are mostly single cells that arise from stem epidermal cells. In this study, a homeodomain-leucine zipper gene (HD1) was found to cosegregate with the dominant trichome locus previously designated as T1 and mapped to chromosome 6. Characterization of HD1 orthologs revealed that the absence of stem trichomes in modern Gossypium barbadense varieties is linked to a large retrotransposon insertion in the ninth exon, 2565 bp downstream from the initial codon in the At subgenome HD1 gene (At-GbHD1). In both the At and Dt subgenomes, reduced transcription of GbHD1 genes is caused by this insertion. The disruption of At-HD1 further affects the expression of downstream GbMYB25 and GbHOX3 genes. Analyses of primitive cultivated accessions identified another retrotransposon insertion event in the sixth exon of At-GbHD1 that might predate the previously identified retrotransposon in modern varieties. Although both retrotransposon insertions results in similar phenotypic changes, the timing of these two retrotransposon insertion events fits well with our current understanding of the history of cotton speciation and dispersal. Taken together, the results of genetics mapping, gene expression and association analyses suggest that GbHD1 is an important component that controls stem trichome development and is a promising candidate gene for the T1 locus. The interspecific phenotypic difference in stem trichome traits also may be attributable to HD1 inactivation associated with retrotransposon insertion.
Journal Article
The Landscape of Copia and Gypsy Retrotransposon During Maize Domestication and Improvement
2019
The release of genomic sequences in the maize HapMap3 population provides an opportunity to study the genetic diversity of maize. In this study, retrotransposon insertion polymorphisms (RIPs) were mapped against the maize genome sequence. In total, 27 retrotransposon families were identified, and more than 170,000 RIPs were discovered in teosinte, landrace, and improved groups. Interestingly, the copy number of transposable elements (TEs) were more abundant in landrace groups than in teosinte or improved groups, suggesting that TEs experienced amplification during domestication and contraction during improvement. Landrace accessions exhibited higher TE insertion frequency compared to the other groups. Furthermore, the position of TE insertions were closer to genes and more abundant in the centromeres of landrace groups compared to the other groups. The three groups could be clearly distinguished by RIPs. These results demonstrate that TEs were amplified and contracted during maize domestication and improvement, respectively.
Journal Article
Remodeling of retrotransposon elements during epigenetic induction of adult visual cortical plasticity by HDAC inhibitors
by
Fagiolini, Michela
,
Saxena, Alka
,
Sandelin, Albin
in
Analysis
,
Animal Genetics and Genomics
,
Biomedical and Life Sciences
2015
Background
The capacity for plasticity in the adult brain is limited by the anatomical traces laid down during early postnatal life. Removing certain molecular brakes, such as histone deacetylases (HDACs), has proven to be effective in recapitulating juvenile plasticity in the mature visual cortex (V1). We investigated the chromatin structure and transcriptional control by genome-wide sequencing of DNase I hypersensitive sites (DHSS) and cap analysis of gene expression (CAGE) libraries after HDAC inhibition by valproic acid (VPA) in adult V1.
Results
We found that VPA reliably reactivates the critical period plasticity and induces a dramatic change of chromatin organization in V1 yielding significantly greater accessibility distant from promoters, including at enhancer regions. VPA also induces nucleosome eviction specifically from retrotransposon (in particular SINE) elements. The transiently accessible SINE elements overlap with transcription factor-binding sites of the Fox family. Mapping of transcription start site activity using CAGE revealed transcription of epigenetic and neural plasticity-regulating genes following VPA treatment, which may help to re-program the genomic landscape and reactivate plasticity in the adult cortex.
Conclusions
Treatment with HDAC inhibitors increases accessibility to enhancers and repetitive elements underlying brain-specific gene expression and reactivation of visual cortical plasticity.
Journal Article
Characterization of the genome of Sclerospora graminicola, the causal fungus of downy mildew of pearl millet
by
Sivaramakrishnan, S.
,
Gupta, V.S.
,
Thakur, R.P.
in
Airborne microorganisms
,
Bacteriology
,
Biological and medical sciences
1997
A genomic library of the most virulent pathotype path-6 (7042S) of Sclerospora graminicola, the causal fungus of downy mildew in pearl millet, was constructed in the lambda gt11 vector. Repetitive DNA content was estimated at about 8% based on colony hybridization of total fungal DNA with a genomic library. Digestion with isoschizomeric methylation-sensitive restriction enzymes revealed partial methylation of GATC and CCGG sequences in the genome. The presence of retrotransposable elements in the genome was detected by amplification of part of the reverse transcriptase gene in a PCR reaction, using a specific set of primers designed for the conserved region.[PUBLICATION ABSTRACT]
Journal Article
Benchmarking transposable element annotation methods for creation of a streamlined, comprehensive pipeline
by
Chougule, Kapeel
,
Agda, Jireh R. A.
,
Ou, Shujun
in
Accuracy
,
Animal Genetics and Genomics
,
Animals
2019
Background
Sequencing technology and assembly algorithms have matured to the point that high-quality de novo assembly is possible for large, repetitive genomes. Current assemblies traverse transposable elements (TEs) and provide an opportunity for comprehensive annotation of TEs. Numerous methods exist for annotation of each class of TEs, but their relative performances have not been systematically compared. Moreover, a comprehensive pipeline is needed to produce a non-redundant library of TEs for species lacking this resource to generate whole-genome TE annotations.
Results
We benchmark existing programs based on a carefully curated library of rice TEs. We evaluate the performance of methods annotating long terminal repeat (LTR) retrotransposons, terminal inverted repeat (TIR) transposons, short TIR transposons known as miniature inverted transposable elements (MITEs), and Helitrons. Performance metrics include sensitivity, specificity, accuracy, precision, FDR, and
F
1
. Using the most robust programs, we create a comprehensive pipeline called Extensive
de-novo
TE Annotator (EDTA) that produces a filtered non-redundant TE library for annotation of structurally intact and fragmented elements. EDTA also deconvolutes nested TE insertions frequently found in highly repetitive genomic regions. Using other model species with curated TE libraries (maize and Drosophila), EDTA is shown to be robust across both plant and animal species.
Conclusions
The benchmarking results and pipeline developed here will greatly facilitate TE annotation in eukaryotic genomes. These annotations will promote a much more in-depth understanding of the diversity and evolution of TEs at both intra- and inter-species levels. EDTA is open-source and freely available:
https://github.com/oushujun/EDTA
.
Journal Article
Activation of individual L1 retrotransposon instances is restricted to cell-type dependent permissive loci
by
Vera-Otarola, Jorge
,
Corbin, Antoine
,
van Essen, Dominic
in
Cell Line
,
Cell lines
,
Deoxyribonucleic acid
2016
LINE-1 (L1) retrotransposons represent approximately one sixth of the human genome, but only the human-specific L1HS-Ta subfamily acts as an endogenous mutagen in modern humans, reshaping both somatic and germline genomes. Due to their high levels of sequence identity and the existence of many polymorphic insertions absent from the reference genome, the transcriptional activation of individual genomic L1HS-Ta copies remains poorly understood. Here we comprehensively mapped fixed and polymorphic L1HS-Ta copies in 12 commonly-used somatic cell lines, and identified transcriptional and epigenetic signatures allowing the unambiguous identification of active L1HS-Ta copies in their genomic context. Strikingly, only a very restricted subset of L1HS-Ta loci - some being polymorphic among individuals - significantly contributes to the bulk of L1 expression, and these loci are differentially regulated among distinct cell lines. Thus, our data support a local model of L1 transcriptional activation in somatic cells, governed by individual-, locus-, and cell-type-specific determinants. Retrotransposons, also known as jumping genes, have invaded the genomes of most living organisms. These fragments of DNA have the ability to move or copy themselves from one location of a chromosome to another. Depending on where they insert themselves, retrotransposons can modify the sequence of nearby genes, which can alter or even abolish their activity. Although these genetic modifications have contributed significantly to the evolution of different species, retrotransposons can also have detrimental effects; for example, by causing new cases of genetic diseases. Adult human cells have a number of mechanisms that work to keep the activity of retrotransposons at a very low level. However, in many types of cancers retrotransposons escape these defense mechanisms and ‘jump’ actively. This is thought to contribute to the development and spread of cancerous tumors. To understand how jumping genes are mobilized, a fundamental question must be answered: is the high jumping gene activity observed in some cell types a result of activating many copies of the retrotransposons, or only a few of them? This question has been difficult to address because there are more than one hundred copies of retrotransposons that could potentially move in humans, many of which have not even been referenced in the human genome map. Furthermore, each copy is almost identical to another one, making it difficult to discriminate between them. Philippe et al. have now developed an approach that can map where individual retrotransposons are located in the genome of normal and cancerous cells and measure how active these jumping genes are. This revealed that only a very restricted number of them are active in any given cell type. Moreover, different subsets of jumping genes are active in different cell types, and their locations in the genome often do not overlap. Thus, whether jumping genes are activated depends on the cell type and their position in the genome. These results are in contrast to the prevalent view that retrotransposons are activated in a more widespread manner across the genome, at least in cancerous cells. Overall, Philippe et al.’s findings pave the way towards characterizing the chromosome regions in which retrotransposons are frequently activated and understanding how they contribute to cancer and other diseases.
Journal Article
The power of retrotransposons in high-throughput genotyping and sequencing
by
Arvas, Yunus Emre
,
Kaya, Yılmaz
,
Kalendar, Ruslan
in
amplification profiling
,
Binding sites
,
Design
2023
The use of molecular markers has become an essential part of molecular genetics through their application in numerous fields, which includes identification of genes associated with targeted traits, operation of backcrossing programs, modern plant breeding, genetic characterization, and marker-assisted selection. Transposable elements are a core component of all eukaryotic genomes, making them suitable as molecular markers. Most of the large plant genomes consist primarily of transposable elements; variations in their abundance contribute to most of the variation in genome size. Retrotransposons are widely present throughout plant genomes, and replicative transposition enables them to insert into the genome without removing the original elements. Various applications of molecular markers have been developed that exploit the fact that these genetic elements are present everywhere and their ability to stably integrate into dispersed chromosomal localities that are polymorphic within a species. The ongoing development of molecular marker technologies is directly related to the deployment of high-throughput genotype sequencing platforms, and this research is of considerable significance. In this review, the practical application to molecular markers, which is a use of technology of interspersed repeats in the plant genome were examined using genomic sources from the past to the present. Prospects and possibilities are also presented.
Journal Article
Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution
by
Mourelatos, Z
,
The Roslin Institute ; Biotechnology and Biological Sciences Research Council (BBSRC)
,
Siepel, A
in
alcohol-dehydrogenase
,
Animals
,
Avian Proteins - genetics
2004
We present here a draft genome sequence of the red jungle fowl, Gallus gallus. Because the chicken is a modern descendant of the dinosaurs and the first non-mammalian amniote to have its genome sequenced, the draft sequence of its genome—composed of approximately one billion base pairs of sequence and an estimated 20,000–23,000 genes—provides a new perspective on vertebrate genome evolution, while also improving the annotation of mammalian genomes. For example, the evolutionary distance between chicken and human provides high specificity in detecting functional elements, both non-coding and coding. Notably, many conserved non-coding sequences are far from genes and cannot be assigned to defined functional classes. In coding regions the evolutionary dynamics of protein domains and orthologous groups illustrate processes that distinguish the lineages leading to birds and mammals. The distinctive properties of avian microchromosomes, together with the inferred patterns of conserved synteny, provide additional insights into vertebrate chromosome architecture.
Journal Article
The Dynamism of Transposon Methylation for Plant Development and Stress Adaptation
by
Ramakrishnan, Muthusamy
,
Satish, Lakkakula
,
Sharma, Anket
in
DNA Methylation
,
DNA Transposable Elements
,
Epigenesis, Genetic
2021
Plant development processes are regulated by epigenetic alterations that shape nuclear structure, gene expression, and phenotypic plasticity; these alterations can provide the plant with protection from environmental stresses. During plant growth and development, these processes play a significant role in regulating gene expression to remodel chromatin structure. These epigenetic alterations are mainly regulated by transposable elements (TEs) whose abundance in plant genomes results in their interaction with genomes. Thus, TEs are the main source of epigenetic changes and form a substantial part of the plant genome. Furthermore, TEs can be activated under stress conditions, and activated elements cause mutagenic effects and substantial genetic variability. This introduces novel gene functions and structural variation in the insertion sites and primarily contributes to epigenetic modifications. Altogether, these modifications indirectly or directly provide the ability to withstand environmental stresses. In recent years, many studies have shown that TE methylation plays a major role in the evolution of the plant genome through epigenetic process that regulate gene imprinting, thereby upholding genome stability. The induced genetic rearrangements and insertions of mobile genetic elements in regions of active euchromatin contribute to genome alteration, leading to genomic stress. These TE-mediated epigenetic modifications lead to phenotypic diversity, genetic variation, and environmental stress tolerance. Thus, TE methylation is essential for plant evolution and stress adaptation, and TEs hold a relevant military position in the plant genome. High-throughput techniques have greatly advanced the understanding of TE-mediated gene expression and its associations with genome methylation and suggest that controlled mobilization of TEs could be used for crop breeding. However, development application in this area has been limited, and an integrated view of TE function and subsequent processes is lacking. In this review, we explore the enormous diversity and likely functions of the TE repertoire in adaptive evolution and discuss some recent examples of how TEs impact gene expression in plant development and stress adaptation.
Journal Article