Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
104
result(s) for
"rev Gene Products, Human Immunodeficiency Virus - chemistry"
Sort by:
HIV Protein Sequence Hotspots for Crosstalk with Host Hub Proteins
by
Tozeren, Aydin
,
Dampier, William
,
Sarmady, Mahdi
in
Algorithms
,
Amino Acid Motifs - genetics
,
Amino Acid Sequence
2011
HIV proteins target host hub proteins for transient binding interactions. The presence of viral proteins in the infected cell results in out-competition of host proteins in their interaction with hub proteins, drastically affecting cell physiology. Functional genomics and interactome datasets can be used to quantify the sequence hotspots on the HIV proteome mediating interactions with host hub proteins. In this study, we used the HIV and human interactome databases to identify HIV targeted host hub proteins and their host binding partners (H2). We developed a high throughput computational procedure utilizing motif discovery algorithms on sets of protein sequences, including sequences of HIV and H2 proteins. We identified as HIV sequence hotspots those linear motifs that are highly conserved on HIV sequences and at the same time have a statistically enriched presence on the sequences of H2 proteins. The HIV protein motifs discovered in this study are expressed by subsets of H2 host proteins potentially outcompeted by HIV proteins. A large subset of these motifs is involved in cleavage, nuclear localization, phosphorylation, and transcription factor binding events. Many such motifs are clustered on an HIV sequence in the form of hotspots. The sequential positions of these hotspots are consistent with the curated literature on phenotype altering residue mutations, as well as with existing binding site data. The hotspot map produced in this study is the first global portrayal of HIV motifs involved in altering the host protein network at highly connected hub nodes.
Journal Article
Native mass spectrometry reveals the initial binding events of HIV-1 rev to RRE stem II RNA
by
Halper, Matthias
,
Heel, Sarah Viola
,
Plangger, Raphael
in
140/58
,
631/1647/296
,
631/326/596/1787
2020
Nuclear export complexes composed of rev response element (RRE) ribonucleic acid (RNA) and multiple molecules of rev protein are promising targets for the development of therapeutic strategies against human immunodeficiency virus type 1 (HIV-1), but their assembly remains poorly understood. Using native mass spectrometry, we show here that rev initially binds to the upper stem of RRE IIB, from where it is relayed to binding sites that allow for rev dimerization. The newly discovered binding region implies initial rev recognition by nucleotides that are not part of the internal loop of RRE stem IIB RNA, which was previously identified as the preferred binding region. Our study highlights the unique capability of native mass spectrometry to separately study the binding interfaces of RNA/protein complexes of different stoichiometry, and provides a detailed understanding of the mechanism of RRE/rev association with implications for the rational design of potential drugs against HIV-1 infection.
The HIV-1 RNA-binding protein rev facilitates nuclear export of viral RNA. Here, the authors use native mass spectrometry to study the interactions between rev-derived peptides and rev response elements of HIV-1 RNA, providing mechanistic insights into rev recognition and recruitment.
Journal Article
Implications of the HIV-1 Rev dimer structure at 3.2 Å resolution for multimeric binding to the Rev response element
by
DiMattia, Michael A
,
Stuart, David I
,
Grimes, Jonathan M
in
Antibodies, Monoclonal
,
Binding sites
,
Biochemistry
2010
HIV-1 Rev is a small regulatory protein that mediates the nuclear export of viral mRNAs, an essential step in the HIV replication cycle. In this process Rev oligomerizes in association with a highly structured RNA motif, the Rev response element. Crystallographic studies of Rev have been hampered by the protein's tendency to aggregate, but Rev has now been found to form a stable soluble equimolar complex with a specifically engineered monoclonal Fab fragment. We have determined the structure of this complex at 3.2 Å resolution. It reveals a molecular dimer of Rev, bound on either side by a Fab, where the ordered portion of each Rev monomer (residues 9-65) contains two coplanar α-helices arranged in hairpin fashion. Subunits dimerize through overlapping of the hairpin prongs. Mating of hydrophobic patches on the outer surface of the dimer is likely to promote higher order interactions, suggesting a model for Rev oligomerization onto the viral RNA.
Journal Article
NES consensus redefined by structures of PKI-type and Rev-type nuclear export signals bound to CRM1
by
Corsini, Lorenzo
,
Ficner, Ralf
,
Görlich, Dirk
in
631/45/535
,
631/80/389
,
Active Transport, Cell Nucleus - physiology
2010
How a variety of nuclear export signals (NESs) are recognized by their receptor CRM1 is now examined by crystallography, NMR spectroscopy, biochemistry and cellular approaches. The work reveals that the different NES peptides adopt different conformations to fit into five rigid hydrophobic binding pockets on CRM1, and redefines an NES consensus.
Classic nuclear export signals (NESs) confer CRM1-dependent nuclear export. Here we present crystal structures of the RanGTP−CRM1 complex alone and bound to the prototypic PKI or HIV-1 Rev NESs. These NESs differ markedly in the spacing of their key hydrophobic (Φ) residues, yet CRM1 recognizes them with the same rigid set of five Φ pockets. The different Φ spacings are compensated for by different conformations of the bound NESs: in the case of PKI, an α-helical conformation, and in the case of Rev, an extended conformation with a critical proline docking into a Φ pocket. NMR analyses of CRM1-bound and CRM1-free PKI NES suggest that CRM1 selects NES conformers that pre-exist in solution. Our data lead to a new structure-based NES consensus, and explain why NESs differ in their affinities for CRM1 and why supraphysiological NESs bind the exportin so tightly.
Journal Article
Structural basis for cooperative RNA binding and export complex assembly by HIV Rev
2010
Nuclear HIV-1 mRNA export is mediated by cooperative Rev protein binding to the Rev response element (RRE) RNA, forming a complex recognized by the Crm1 host export factor. A structure of a Rev dimer now shows that the organization of Rev monomers within a dimer defines the RRE recognition interface, with the other side likely binding Crm1.
HIV replication requires nuclear export of unspliced viral RNAs to translate structural proteins and package genomic RNA. Export is mediated by cooperative binding of the Rev protein to the Rev response element (RRE) RNA, to form a highly specific oligomeric ribonucleoprotein (RNP) that binds to the Crm1 host export factor. To understand how protein oligomerization generates cooperativity and specificity for RRE binding, we solved the crystal structure of a Rev dimer at 2.5-Å resolution. The dimer arrangement organizes arginine-rich helices at the ends of a V-shaped assembly to bind adjacent RNA sites and structurally couple dimerization and RNA recognition. A second protein-protein interface arranges higher-order Rev oligomers to act as an adaptor to the host export machinery, with viral RNA bound to one face and Crm1 to another, the oligomers thereby using small, interconnected modules to physically arrange the RNP for efficient export.
Journal Article
m6A minimally impacts the structure, dynamics, and Rev ARM binding properties of HIV-1 RRE stem IIB
by
Liu, Bei
,
Plangger, Raphael
,
Chu, Chia-Chieh
in
Adenosine - analogs & derivatives
,
Adenosine - chemistry
,
Arginine
2019
N6-methyladenosine (m6A) is a ubiquitous RNA post-transcriptional modification found in coding as well as non-coding RNAs. m6A has also been found in viral RNAs where it is proposed to modulate host-pathogen interactions. Two m6A sites have been reported in the HIV-1 Rev response element (RRE) stem IIB, one of which was shown to enhance binding to the viral protein Rev and viral RNA export. However, because these m6A sites have not been observed in other studies mapping m6A in HIV-1 RNA, their significance remains to be firmly established. Here, using optical melting experiments, NMR spectroscopy, and in vitro binding assays, we show that m6A minimally impacts the stability, structure, and dynamics of RRE stem IIB as well as its binding affinity to the Rev arginine-rich-motif (ARM) in vitro. Our results indicate that if present in stem IIB, m6A is unlikely to substantially alter the conformational properties of the RNA. Our results add to a growing view that the impact of m6A on RNA depends on sequence context and Mg2+.
Journal Article
Highly Mutable Linker Regions Regulate HIV-1 Rev Function and Stability
2019
HIV-1 Rev is an essential viral regulatory protein that facilitates the nuclear export of intron-containing viral mRNAs. It is organized into structured, functionally well-characterized motifs joined by less understood linker regions. Our recent competitive deep mutational scanning study confirmed many known constraints in Rev’s established motifs, but also identified positions of mutational plasticity, most notably in surrounding linker regions. Here, we probe the mutational limits of these linkers by testing the activities of multiple truncation and mass substitution mutations. We find that these regions possess previously unknown structural, functional or regulatory roles, not apparent from systematic point mutational approaches. Specifically, the N- and C-termini of Rev contribute to protein stability; mutations in a turn that connects the two main helices of Rev have different effects in different contexts; and a linker region which connects the second helix of Rev to its nuclear export sequence has structural requirements for function. Thus, Rev function extends beyond its characterized motifs, and is tuned by determinants within seemingly plastic portions of its sequence. Additionally, Rev’s ability to tolerate many of these massive truncations and substitutions illustrates the overall mutational and functional robustness inherent in this viral protein.
Journal Article
The export receptor Crm1 forms a dimer to promote nuclear export of HIV RNA
by
Cheng, Yifan
,
Frankel, Alan D
,
Booth, David S
in
Active Transport, Cell Nucleus
,
Binding Sites
,
Biophysics
2014
The HIV Rev protein routes viral RNAs containing the Rev Response Element (RRE) through the Crm1 nuclear export pathway to the cytoplasm where viral proteins are expressed and genomic RNA is delivered to assembling virions. The RRE assembles a Rev oligomer that displays nuclear export sequences (NESs) for recognition by the Crm1-RanGTP nuclear receptor complex. Here we provide the first view of an assembled HIV-host nuclear export complex using single-particle electron microscopy. Unexpectedly, Crm1 forms a dimer with an extensive interface that enhances association with Rev-RRE and poises NES binding sites to interact with a Rev oligomer. The interface between Crm1 monomers explains differences between Crm1 orthologs that alter nuclear export and determine cellular tropism for viral replication. The arrangement of the export complex identifies a novel binding surface to possibly target an HIV inhibitor and may point to a broader role for Crm1 dimerization in regulating host gene expression.
To be able to multiply, viruses first have to infect a host cell and then hijack the host's molecular machinery to make viral proteins. The first stage of this process takes place in the nucleus of the host cell and involves the DNA being transcribed to make RNA molecules. These RNA molecules must then be exported from the nucleus to the cytoplasm, where the proteins are made.
For RNA molecules that have been transcribed from the cell's own DNA, this export process happens automatically. However, the export of viral RNA molecules requires help from the virus. In the case of HIV-1, the virus supplies a protein called Rev, which binds to a region on the viral RNA molecules called the Rev Response Element. The Rev protein then binds to a group of host proteins called the Crm1 export complex to send the viral RNA molecules to the cytoplasm. Although the 3D structures of the individual components have been worked out, it is not known how the viral RNA molecule, the Rev protein and the Crm1 proteins all fit together to make a complex.
Booth et al. have used a technique called single-particle electron microscopy to produce a 3D structure of the whole complex. It shows that this complex forms with two Crm1 proteins contacting each other as they bind to the Rev protein that is already bound to the RNA molecule. It also reveals a new surface of the complex that had not been previously predicted to exist. In parallel work from the same laboratory, Jayaraman et al., 2014 . have used a different technique to reveal a highly-detailed 3D structure of Rev molecules binding to the Rev Response Element.
Both structures shed new light on how the HIV-1 virus is able to multiply in its host, which may aid future efforts to develop new treatments for the disease.
Journal Article
RNA-directed remodeling of the HIV-1 protein Rev orchestrates assembly of the Rev–Rev response element complex
by
Ribeiro, Isabel
,
Homer, Christina
,
Frankel, Alan D
in
Active Transport, Cell Nucleus
,
Binding Sites
,
Biochemistry
2014
The HIV-1 protein Rev controls a critical step in viral replication by mediating the nuclear export of unspliced and singly-spliced viral mRNAs. Multiple Rev subunits assemble on the Rev Response Element (RRE), a structured region present in these RNAs, and direct their export through the Crm1 pathway. Rev-RRE assembly occurs via several Rev oligomerization and RNA-binding steps, but how these steps are coordinated to form an export–competent complex is unclear. Here, we report the first crystal structure of a Rev dimer-RRE complex, revealing a dramatic rearrangement of the Rev-dimer upon RRE binding through re-packing of its hydrophobic protein–protein interface. Rev-RNA recognition relies on sequence-specific contacts at the well-characterized IIB site and local RNA architecture at the second site. The structure supports a model in which the RRE utilizes the inherent plasticity of Rev subunit interfaces to guide the formation of a functional complex.
To be able to multiply, viruses have to first infect a host cell and then hijack the host's molecular machinery to make viral proteins. One stage of this process takes place in the nucleus of the host cell and involves the viral DNA being transcribed to make RNA molecules. These RNA molecules must then be exported from the nucleus to the cytoplasm, where the viral proteins are made.
In the case of HIV-1, a protein called Rev has an important role in the export process. The Rev protein, which is supplied by the virus, binds to a region on the viral RNA molecules called the Rev Response Element. The Rev protein then binds to a group of host proteins called the Crm1 export complex to send the viral RNA molecules to the cytoplasm.
Jayaraman et al. now provide the first in-depth 3D structure of two Rev molecules bound to a fragment of the Rev Response Element. The Rev molecules change shape when they bind to the element, and specific regions of the element were found to be important for this. The experiments suggest that the Rev Response Element directs the positioning of the Rev proteins on itself to match the shape needed to bind to Crm1 export complex. In parallel work from the same laboratory, Booth et al. have produced a 3D structure of the whole complex.
Both structures shed new light on how the HIV-1 virus is able to multiply in its host, which may aid future efforts to develop new treatments for the disease.
Journal Article
RNA-guided assembly of Rev-RRE nuclear export complexes
by
Zhou, Kaihong
,
Tambe, Akshay
,
Doudna, Jennifer A
in
Active Transport, Cell Nucleus - genetics
,
BASIC BIOLOGICAL SCIENCES
,
Binding Sites
2014
HIV replication requires nuclear export of unspliced and singly spliced viral transcripts. Although a unique RNA structure has been proposed for the Rev-response element (RRE) responsible for viral mRNA export, how it recruits multiple HIV Rev proteins to form an export complex has been unclear. We show here that initial binding of Rev to the RRE triggers RNA tertiary structural changes, enabling further Rev binding and the rapid formation of a viral export complex. Analysis of the Rev-RRE assembly pathway using SHAPE-Seq and small-angle X-ray scattering (SAXS) reveals two major steps of Rev-RRE complex formation, beginning with rapid Rev binding to a pre-organized region presenting multiple Rev binding sites. This step induces long-range remodeling of the RNA to expose a cryptic Rev binding site, enabling rapid assembly of additional Rev proteins into the RNA export complex. This kinetic pathway may help maintain the balance between viral replication and maturation.
HIV is a virus that causes the immune system of an infected person to gradually fail, which can eventually result in AIDS. The virus consists of an RNA molecule—which encodes its genetic information—surrounded by coats of proteins. Once HIV enters a host cell, its RNA genome is converted into a DNA molecule, which travels to the nucleus and becomes part of the host's genome. The integrated viral genome can remain dormant for an extended period before the virus starts to replicate.
HIV replication begins with the production of RNA copies of the viral genome. For certain types of viral RNA molecules to be translated and packaged into new virus particles they need to be exported from the nucleus as part of the ‘nuclear–export complex’. This is made up of: a HIV RNA molecule, a HIV protein called Rev, and two host proteins.
Formation of the nuclear–export complex begins with multiple copies of the Rev protein attaching to specific stretches of the viral RNA, but how the Rev proteins assemble on the RNA molecule was previously unclear. Bai et al. have now used both structural and biochemical techniques to dissect the individual steps in this process. First, Rev proteins rapidly bind to a pre-formed region of the RNA molecule where multiple binding sites are compactly organized. This causes the overall shape of the RNA to change, and exposes a previously hidden extra binding site for Rev proteins. More Rev proteins then quickly bind to the newly exposed site, before finally the two host proteins bind and the whole complex is exported from the nucleus.
Bai et al. propose that checkpoints during this two-step assembly process are required to ensure that Rev proteins specifically bind to viral RNAs, and that such checkpoints may be important for controlling viral replication. The findings of Bai et al. may, in future, help to develop new drugs that treat HIV infection by blocking the export of the virus from the nucleus and thus inhibiting HIV replication.
Journal Article