Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
408,531 result(s) for "robots"
Sort by:
Progress and prospects of the human–robot collaboration
Recent technological advances in hardware design of the robotic platforms enabled the implementation of various control modalities for improved interactions with humans and unstructured environments. An important application area for the integration of robots with such advanced interaction capabilities is human–robot collaboration. This aspect represents high socio-economic impacts and maintains the sense of purpose of the involved people, as the robots do not completely replace the humans from the work process. The research community’s recent surge of interest in this area has been devoted to the implementation of various methodologies to achieve intuitive and seamless human–robot-environment interactions by incorporating the collaborative partners’ superior capabilities, e.g. human’s cognitive and robot’s physical power generation capacity. In fact, the main purpose of this paper is to review the state-of-the-art on intermediate human–robot interfaces (bi-directional), robot control modalities, system stability, benchmarking and relevant use cases, and to extend views on the required future developments in the realm of human–robot collaboration.
Man on mobility scooter films collision with delivery robot
A man who uses a mobility scooter due to his cerebral palsy recorded a video of a delivery robot in West Hollywood blocking him from passing by on the sidewalk.
Robots on the move
\"Discusses the latest advancements in robotics and how they are made to move in different ways\"--Provided by publisher.
Inside San Francisco’s robot fight club
Humanoid robots have become a cultural phenomena. Tech reporter Gerrit De Vynck attended a robot cage fight in San Francisco to experience the craze firsthand.
Sensory systems for robotic applications
Thanks to advances in sensing and computer vision technologies, robots can be found today in healthcare, medicine and the industry. Topics covered in this edited book include various types of sensors used in robotics, sensing schemes, sensing technologies and their applications including robotics, prosthetics, wearables and healthcare. Written for those working in robotics, sensor technologies and electronics, and their applications in robotics, haptics, prosthetics, wearable and interactive systems, cognitive engineering, neuro-engineering, computational neuroscience, medicine, and healthcare technologies.
Robot Operating System cookbook : over 70 recipes to help you master advanced ROS concepts
ROS is an open-source, meta-operating system for your robot which provides libraries and tools to help software developers create robot applications. This book will help you to design, build and simulate complex robots including mobile robots, robotic arms, and micro aerial vehicles, using this meta-operating system.
Review of Autonomous Path Planning Algorithms for Mobile Robots
Mobile robots, including ground robots, underwater robots, and unmanned aerial vehicles, play an increasingly important role in people’s work and lives. Path planning and obstacle avoidance are the core technologies for achieving autonomy in mobile robots, and they will determine the application prospects of mobile robots. This paper introduces path planning and obstacle avoidance methods for mobile robots to provide a reference for researchers in this field. In addition, it comprehensively summarizes the recent progress and breakthroughs of mobile robots in the field of path planning and discusses future directions worthy of research in this field. We focus on the path planning algorithm of a mobile robot. We divide the path planning methods of mobile robots into the following categories: graph-based search, heuristic intelligence, local obstacle avoidance, artificial intelligence, sampling-based, planner-based, constraint problem satisfaction-based, and other algorithms. In addition, we review a path planning algorithm for multi-robot systems and different robots. We describe the basic principles of each method and highlight the most relevant studies. We also provide an in-depth discussion and comparison of path planning algorithms. Finally, we propose potential research directions in this field that are worth studying in the future.