Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
17,334
result(s) for
"root crops"
Sort by:
Conservation of polypyrimidine tract binding proteins and their putative target RNAs in several storage root crops
by
Kondhare, Kirtikumar R.
,
Hannapel, David J.
,
Kumar, Amit
in
Analysis
,
Animal Genetics and Genomics
,
BEL1-like
2018
Background
Polypyrimidine-tract binding proteins (PTBs) are ubiquitous RNA-binding proteins in plants and animals that play diverse role in RNA metabolic processes. PTB proteins bind to target RNAs through motifs rich in cytosine/uracil residues to fine-tune transcript metabolism. Among tuber and root crops, potato has been widely studied to understand the mobile signals that activate tuber development. Potato PTBs, designated as StPTB1 and StPTB6, function in a long-distance transport system by binding to specific mRNAs (
StBEL5
and
POTH1
) to stabilize them and facilitate their movement from leaf to stolon, the site of tuber induction, where they activate tuber and root growth. Storage tubers and root crops are important sustenance food crops grown throughout the world. Despite the availability of genome sequence for sweet potato, cassava, carrot and sugar beet, the molecular mechanism of root-derived storage organ development remains completely unexplored. Considering the pivotal role of PTBs and their target RNAs in potato storage organ development, we propose that a similar mechanism may be prevalent in storage root crops as well.
Results
Through a bioinformatics survey utilizing available genome databases, we identify the orthologues of potato PTB proteins and two phloem-mobile RNAs,
StBEL5
and
POTH1,
in five storage root crops - sweet potato, cassava, carrot, radish and sugar beet. Like potato, PTB1/6 type proteins from these storage root crops contain four conserved RNA Recognition Motifs (characteristic of RNA-binding PTBs) in their protein sequences. Further, 3´ UTR (untranslated region) analysis of
BEL5
and
POTH1
orthologues revealed the presence of several cytosine/uracil motifs, similar to those present in potato
StBEL5
and
POTH1
RNAs. Using RT-qPCR assays, we verified the presence of these related transcripts in leaf and root tissues of these five storage root crops. Similar to potato,
BEL5-
,
PTB1/6-
and
POTH1
-like orthologue RNAs from the aforementioned storage root crops exhibited differential accumulation patterns in leaf and storage root tissues.
Conclusions
Our results suggest that the PTB1/6-like orthologues and their putative targets,
BEL5-
and
POTH1
-
like
mRNAs, from storage root crops could interact physically, similar to that in potato, and potentially, could function as key molecular signals controlling storage organ development in root crops.
Journal Article
The Impact of Intercropping on Soil Fertility and Sugar Beet Productivity
by
Balandaitė, Jovita
,
Romaneckas, Kęstutis
,
Šarauskis, Egidijus
in
Beta vulgaris L
,
chemical composition
,
crop yield
2020
There is a lack of research on the practice of intercropping sugar beet and the impact of such agrocenoses on soil and crop fertility, especially under organic farming conditions. For this reason, a three-year stationary field experiment was performed at Vytautas Magnus University, Agriculture Academy, Lithuania. Sugar beet was grown continuously with intercropped Persian clover (Trifolium resupinatum L., MC), white mustard (Sinapis alba L., MM) and spring barley (Hordeum vulgare L., MB) as a living mulch. Inter-row loosening (CT) and mulching with ambient weeds (MW) were used as comparative treatments. The results showed that, under minimal fertilization, CT and intercropping increased the average content of nitrogen, phosphorus and potassium in the soil. However, the average content of magnesium was reduced in single cases (MW, MB), and the average content of sulphur was reduced in all cases. Intercropping significantly decreased the yields of sugar beet root-crop, but was mainly neutral in quality terms. The meteorological conditions during experimentation had a weak impact on root-crop quantity and quality. Generally, the practice of sugar beet intercropping requires more detailed research on how to minimize the competition between the sugar beet, living mulch and weeds, and how to balance the nutrition conditions.
Journal Article
Ginseng Diggers
by
Manget, Luke
in
Herb industry
,
Hunting and gathering societies-Appalachian Region-History
,
Root crops-Appalachian Region-History
2022
The harvesting of wild American ginseng ( panax quinquefolium ), the gnarled, aromatic herb known for its therapeutic and healing properties, is deeply established in North America and has played an especially vital role in the southern and central Appalachian Mountains.
Trends and drivers of on-farm conservation of the root legume ahipa (Pachyrhizus ahipa) in Bolivia over the period 1994/96–2012
by
Andreasen, Christian
,
Jacobsen, Sven-Erik
,
Ørting, Bo
in
Agriculture
,
Agrobiodiversity
,
Andes region
2018
The leguminous Andean root crop ahipa has become scarce and the current status of in situ conservation in Bolivia is concerning. Agro-biodiversity changes affect the use, conservation and socio-economic trends for ahipa (
Pachyrhizus ahipa
) and to substantiate this, a comparison of two cropping periods were made. Aspects of root production and the shift from cultivation of ahipa to cash crops such as maize were compared for two periods: (a) 1994/96 and (b) 2012. Our study showed that the price of ahipa had not increased in 70% of the urban markets; hence, there is little incentive to retain the cultivation of ahipa. We found that rural ahipa growers selected the largest seeds, but did not select seeds by colour. The mixed seed colour predominated the conservation of ahipa. Laborious yield enhancing practices required in field management and low market value endanger future conservation of the ahipa. We conclude that additional research is needed in order to safeguard the extant variation of ahipa, i.e. nutritional value, taste, stress tolerance and market potential.
Journal Article
Crop wild relatives of the United States require urgent conservation action
by
Wiersema, John H.
,
Frances, Anne
,
Khoury, Colin K.
in
biodiversity conservation
,
Biological Sciences
,
botanical composition
2020
The contributions of crop wild relatives (CWR) to food security depend on their conservation and accessibility for use. The United States contains a diverse native flora of CWR, including those of important cereal, fruit, nut, oil, pulse, root and tuber, and vegetable crops, which may be threatened in their natural habitats and underrepresented in plant conservation repositories. To determine conservation priorities for these plants, we developed a national inventory, compiled occurrence information, modeled potential distributions, and conducted threat assessments and conservation gap analyses for 600 native taxa. We found that 7.1% of the taxa may be critically endangered in their natural habitats, 50% may be endangered, and 28% may be vulnerable. We categorized 58.8% of the taxa as of urgent priority for further action, 37% as high priority, and 4.2% as medium priority. Major ex situ conservation gaps were identified for 93.3% of the wild relatives (categorized as urgent or high priority), with 83 taxa absent from conservation repositories, while 93.1% of the plants were equivalently prioritized for further habitat protection. Various taxonomic richness hotspots across the US represent focal regions for further conservation action. Related needs include facilitating greater access to and characterization of these cultural-genetic-natural resources and raising public awareness of their existence, value, and plight.
Journal Article
Roots and Tuber Crops as Functional Foods: A Review on Phytochemical Constituents and Their Potential Health Benefits
2016
Starchy roots and tuber crops play a pivotal role in the human diet. There are number of roots and tubers which make an extensive biodiversity even within the same geographical location. Thus, they add variety to the diet in addition to offering numerous desirable nutritional and health benefits such as antioxidative, hypoglycemic, hypocholesterolemic, antimicrobial, and immunomodulatory activities. A number of bioactive constituents such as phenolic compounds, saponins, bioactive proteins, glycoalkaloids, and phytic acids are responsible for the observed effects. Many starchy tuber crops, except the common potatoes, sweet potatoes, and cassava, are not yet fully explored for their nutritional and health benefits. In Asian countries, some edible tubers are also used as traditional medicinal. A variety of foods can be prepared using tubers and they may also be used in industrial applications. Processing may affect the bioactivities of constituent compounds. Tubers have an immense potential as functional foods and nutraceutical ingredients to be explored in disease risk reduction and wellness.
Journal Article
Intercropping Under Rice-Based Cropping System
2013
Rice farmers are mostly involved in monoculture practices. This deprives the land for growing other food crops. Hence, a better alternative of mono/sole cropping is required to overcome this shortcoming. Therefore, a shift from mono cropping to inter/multiple cropping as an excellent strategy for intensifying land use and increasing income and production per unit area and time is appreciated. Production efficiency, economic efficiency and employment generation efficiency of any diversified system is a direct measure of its preferability. Keeping this view in mind, this study deals with the production potential and economic viability of different rabi intercropping in rabi cereal, legume, oilseeds and spices to identify the suitable/remunerative rice (Oryza sativa L.) based cropping systems. Auszug aus dem Text Text sample: Kapitel 2.1.4, Total productivity of system with intercrop: Improving resource utilization in time and space dimension is achieved through inter cropping. Singh and Singh (1983) reported that highest mean land equivalent ratio (1.27) was recorded in wheat and gram intercropping system, followed by wheat + pea (1.19) and wheat + lentil (1.10). Mandal et al. (1986) reported that intercropping of wheat and lentil generated a bonus yield that of wheat and chickpea gave an additional yield without any significant reduction in wheat yield. Devi et al. (1997) studied that rice-chickpea-maize + cowpea fodder had highest productivity & net profit and the same may be recommended for sustainable cultivation under tarai region & alternative to rice - wheat sequence. Kumar et al. (2001) found that highest rice equivalent productivity (kg ha-1) was obtained in rice-potato + onion, mustard + black gram system having productivity of 53.1 kg day -1 ha-1. Similarly, Singh et al. (2001) found that rice- lentil-maize + fodder cowpea system gave
significantly highest rice equivalent yield. Singh et al. (2004) reported that the rice-lentil-maize + cowpea (f) sequence in flood-prone and rice-wheat-maize + cowpea (f) in semi-deep water situation gave significantly the highest rice equivalent yield (95.82 and 106.7 q ha-1, respectively). Ganvir et al. (2004) reported that among the treatments, castor + groundnut (1:2) gave the highest castor and intercrop yield, total productivity, castor grain yield equivalent and gross monetary returns. Thakur et al. (2004) studied that Sunflower + chickpea (1:1) gave the maximum plant height (100 cm) and land equivalent ratio (1.27). Sunflower + linseed (1:1) gave the highest head size (12.5 cm) and grain yield (1525 kg ha-1). Sunflower + niger (1:1) had the highest number of seeds per head (279) and relative crowding coefficient (3.33). Sunflower + pea (1:1) while, sunflower + pea (1:2) and sunflower + linseed (1:2) gave the highest seed chaffiness (9.2%), sunflower equivalent yield (1101 kg ha-1) and stem girth (5.0 cm), respectively. Panwar and Rajbir (2004) found that the maximum Brassica napus yield equivalent (25.21 q ha-1) was observed in Brassica napus + chickpea. The yield equivalents obtained under Brassica napus + toria and Brassica napus+ Brassica juncea combinations were significantly less (19.90 and 19.08 q ha-1, respectively) than sole cropping of Brassica napus (21.27 q ha-1). Padmavathi and Raghavaiah (2004) found that the seed yield of castor (471 kg ha-1) was adversely affected due to intercropping when compared to the sole crop of castor (748 kg ha-1). The castor-equivalent yield was greater when castor was intercropped with cluster bean (1259; 2026 kg ha-1) and cucumber (1536; 2050 kg ha-1) either in 1 or 2 rows, respectively. Sharma et al. (2008) reported that among the 14 rice-based cropping systems tested, rice-potato-onion + maize
relay cropping gave the highest mean rice-equivalent yield (30.66 t ha-1 year-1), followed by rice-garlic - maize (30.35 t ha-1 year-1) and rice-potato-onion (27.95 t ha-1 year-1). 2.2, Effect of cropping systems on soil fertility status: Nambiar and Abrol (1989), Kumar and Yadav (1993) reported that continuously following the same system (rice - wheat sequence) has diverse effect on soil conditions, which ultimately reducing the productivity of the system. Singh and Prasad (1994) found that maximum nitrogen balance was recorded under rice-gram-green gram (128 kg N ha-1) cropping sequence, whereas maximum potassium balance was under rice-maize, black gram (184 kg ha-1). However, phosphorus-balance sheet showed a loss of in all the crop sequences with maximum loss under rice-potato-green gram (214 kg P ha-1) sequence. Bharadwaj and Omanwar (1994) reported that the highest net gain of K was observed with rice-fenugreek (+97.5 kg ha-1) followed by rice-wheat (+76.2 kg ha-1). The maximum gain of K by rice-fenugreek might be attributed to the direct addition of K to the available K pool of the soil besides the reduction of K fixation and release of K due to interaction of organic matter with clay. Singh et al. (1996) and Setty and Gowda (1997) observed that the introduction of legume in the system increased soil organic carbon and available soil phosphorus. Singh et al. (1996) and Quayyam and Maniruzzaman (1996) found that the inclusion of legumes makes less demand on the soil resources and at the same time they have capacity to fix atmospheric nitrogen in their root nodules and helped in increasing the yield of succeeding rice crop. While, Thakur et al. (1998) reported that cropping system involving pulse crops in the winter (rabi) season had better soil fertility (N, P and K) status than those involving winter cereals. On the other hand, Kumpawat
(2001) studied that productivity of rice - wheat system had shown consistently declining trend. Inclusion of pulses, oilseeds & vegetables in the system has the more beneficial effect than cereal - after cereals. Sharma and Sharma (2002) observed that rice-berseem cropping system resulted in negative balance of nitrogen (144 kg ha-1), phosphorus (23 kg ha-1) and potassium (416 kg ha-1). Rice-mustard-green gram cropping system also resulted in negative balance of 131 kg ha-1 N and 330 kg ha-1 K. Nitrogen and phosphorus balance was found positive in rice-wheat-green gram and rice-potato-green gram cropping system. Whereas, potassium balance was negative in these cropping systems. Sharma and Sharma (2002) reported that the balance of P was positive in rice-wheat-green gram, rice-potato-sunflower, rice-garlic-maize, rice-marigold- maize + green gram, rice-fenugreek-maize and rice-sunflower-okra cropping system, and it varied from 6.30 kg ha-1 year-1 in rice- fenugreek-maize to 28.20 kg ha-1 year-1 in rice- marigold-maize + green gram cropping system. This shows that the P removed by the crops was less than that the applied to them. However, the other cropping systems showed a negative balance. The maximum deficit of P (31.40 kg-1 ha-1 year-1) was observed in rice-berseem maize + cowpea (f) cropping system, indicating that the quantity of P applied to fodder crops was less than that removal from the soil. Singh et al. (2004) found that available nutrients like nitrogen, phosphorus and potassium was improved due to legume included in cropping sequence. However, cereal and oilseed included in cropping sequences reduced the content of available nitrogen, phosphorus, potassium and organic carbon due to higher uptake and lower addition of nutrients in soil.
High Nitrogen Availability Limits Photosynthesis and Compromises Carbohydrate Allocation to Storage in Roots of Manihot esculenta Crantz
by
Lazarovitch, Naftali
,
Rachmilevitch, Shimon
,
Omondi, John Okoth
in
Agricultural production
,
Canopies
,
Carbohydrates
2019
Cassava ( M. esculenta Crantz), feeding countless people and attracting markets worldwide, is a model for traditional crops that need physiology-based fertigation (fertilization through irrigation) standards in intensive cultivation. Hence, we studied the effects of 10 to 200 mg L-1 nitrogen (N) fertigation on growth and yields of cassava and targeted alterations in their photosynthetic, transpiration, and carbohydrate management. We found that increasing irrigation N from 10 to 70 mg L-1 increased cassava’s photosynthesis and transpiration but supported only the canopy’s growth. At 100 mg N L-1 cassava reached a threshold of sugar in leaves (∼47 mg g-1), began to accumulate starch and supported higher yields. Yet, at 200 mg N L-1, the canopy became too demanding and plants had to restrain transpiration, reduce photosynthesis, decrease carbohydrates, and finally lower yields. We concluded that the phases of cassava response to nitrogen are: 1) growth that does not support yields at low N, 2) productive N application, and 3) excessive use of N. Yet traditional leaf mineral analyses fail to exhibit these responses, and therefore we propose a simple and inexpensive carbohydrate measurement to guide a precise use of N.
Journal Article
Incorporating Root Crops under Agro-Forestry as the Newly Potential Source of Food, Feed and Renewable Energy
by
Saleh, Nasir
,
Widodo, Yudi
,
Rahayuningsih, St. A.
in
Agricultural development
,
Agricultural land
,
Agroforestry
2014
Entering the third millennium food and energy crisis is becoming more serious in line with water scarcity amid of climate change induced by global warming, that so called as FEWS (food energy and water scarcity). In the last five decades Indonesian agricultural development of food crops had been emphasized on cereals and grains based. Conversion of forest into agricultural field in the form of upland and lowland facilitated by irrigation is prioritized for cereals such as rice, maize as well as grain legumes such as soybean, peanut etc. Unfortunately, root crops which their main yield underground are neglected. At the end of second millennium Indonesia was seriously suffered from multi-crisis economic trap, so Indonesia as part of countries under World Food Program to import the huge of food to cover domestic consumption such as rice, wheat, soybean, corn etc. On the other hand, consumption of energy was also increase significantly. These conditions triggering government to stimulate integrated agricultural enterprises for providing abundance of food as well as adequate renewable energy. Although root crops were neglected previously, however from its biological potential to produce biomass promotes root crops into an appropriate position. The variability of root crops which ecologically can be grown from upland in dry areas till swampy submergence condition. Forest conversion into agricultural land is not allowed due to forest is useful to prevent global warming. Therefore, food, feed and fuel (renewable energy) production have to be able grown under agro-forestry. Fortunately the potential of root crops has competency to meet the current need to fulfil food, feed and fuel as well as fibre under future greener environment.
Journal Article