Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
12,463
result(s) for
"root mean square error"
Sort by:
Assessing the impact of climate change over the northwest of Iran: an overview of statistical downscaling methods
by
Seifi, Arshia Jedary
,
Sheikhbabaei Ali
,
Eslahi Mehdi
in
Artificial neural networks
,
Climate change
,
Climate models
2020
Due to the spatial-temporal inadequacy of large-scale general circulation models (GCMs), linking large-scale GCM data with small-scale local climatic data has found great interest. In this paper, in order to downscale minimum and maximum temperatures and precipitation predictands, the performance of three statistical downscaling techniques including Long Ashton Research Station-Weather Generator (LARS-WG), statistical downscaling model (SDSM), and artificial neural network (ANN) was compared based on Intergovernmental Panel on Climate Change-Fifth Assessment Report (IPCC-AR5) in northwest Iran. For this purpose, a nonparametric test named Mann-Whitney test, Spearman correlation coefficient, and the root mean square error (RMSE) were utilized to assess the efficiency of downscaling models. To scrutinize the climate change impacts, periods of 1961–1990 and 1991–2005 were considered as the baseline and verification periods, respectively. The findings revealed the superior performance of the ANN model for minimum and maximum temperatures, while for precipitation predictand, the SDSM represented the best performance among the models. Simulation results for future temperature indicated an ascending trend as 0.1–1.3 °C, 0.3–1.7 °C, and 0.5–2.1 °C for LARS-WG, SDSM, and ANN techniques, respectively. On the other hand, simulation outputs for the precipitation indicated a descending trend of 10–30% in future precipitation of the region according to downscaling models under Representative Concentration Pathway 8.5 (RCP8.5) pessimistic scenario of Hadley Center Coupled Model version 3 (HadCM3) GCM model.
Journal Article
Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance
2005
The relative abilities of 2, dimensioned statistics—the root-mean-square error (RMSE) and the mean absolute error (MAE)—to describe average model-performance error are examined. The RMSE is of special interest because it is widely reported in the climatic and environmental literature; nevertheless, it is an inappropriate and misinterpreted measure of average error. RMSE is inappropriate because it is a function of 3 characteristics of a set of errors, rather than of one (the average error). RMSE varies with the variability within the distribution of error magnitudes and with the square root of the number of errors (n
1/2), as well as with the average-error magnitude (MAE). Our findings indicate that MAE is a more natural measure of average error, and (unlike RMSE) is unambiguous. Dimensioned evaluations and inter-comparisons of average model-performance error, therefore, should be based on MAE.
Journal Article
Evaluation of ocean wave power utilizing COWCLIP 2.0 datasets: a CMIP5 model assessment
by
Hisaki, Yukiharu
,
Kumar, Prashant
,
Bhaskaran, Prasad Kumar
in
climate
,
Climate change
,
Climate models
2024
Global Climate Models (GCMs) are very essential and crucial for projecting future climate scenarios under different greenhouse gas emissions, incorporating uncertainties in the global warming projections. The present study evaluates the seasonal performance of 32 Coupled Model Intercomparison Project Phase 5 (CMIP5) models obtained from the Coordinated Ocean Wave Climate Project phase 2 (COWCLIP 2.0) in simulating the global and regional wave power (WP) from 1979 to 2004 using historical data, and comparing them against the ERA5 reanalysis. Three skill metrics, such as Root Mean Square Error (RMSE), Interannual Variability Skill (IVS), and M-Score were used to assess the model performance across three clusters (CSIRO, JRC, and IHC). In addition, Intra-seasonal and probability distribution is also employed to determine the cluster’s performance, including individual models. The IHC cluster, employing statistical techniques, exhibited the lowest RMSE and highest M-Score values with the least variation among models over the global as well as regional ocean basins such as the North Atlantic (NA), North Pacific (NP), Indian Ocean (IO), and Pacific Ocean (PO. Results from intra-seasonal variability and probability distribution indicate that the IHC cluster demonstrates the most stable performance in simulating intra-seasonal variability of WP as compared to other clusters.
Journal Article
Machine learning and statistical prediction of fastball velocity with biomechanical predictors
by
Collins, G.S.
,
Bullock, G.S.
,
Nicholson, K.F.
in
Baseball
,
Biomechanical Phenomena
,
Biomechanics
2022
In recent years, one of the most important factors for success among baseball pitchers is fastball velocity. The purpose of this study was to (1) to develop statistical and machine learning models of fastball velocity, (2) to identify the strongest predictors of fastball velocity, and (3) to compare the models' prediction performances. Three dimensional biomechanical analyses were performed on high school (n = 165) and college (n = 62) baseball pitchers. A total of 16 kinetic and kinematic predictors from the entire pitching sequence were included in regression and machine learning models. All models were internally validated through ten-fold cross-validation. Model performance was evaluated through root mean square error (RMSE) and calibration with 95% confidence intervals. Gradient boosting machines demonstrated the best prediction performance [RMSE: 0.34; Calibration: 1.00 (95% CI: 0.999, 1.001)], while regression demonstrated the greatest prediction error [RMSE: 2.49; Calibration: 1.00 (95% CI: 0.85, 1.15)]. Maximum elbow extension velocity (relative influence: 19.3%), maximum humeral rotation velocity (9.6%), maximum lead leg ground reaction force resultant (9.1%), trunk forward flexion at release (7.9%), time difference of maximum pelvis rotation velocity and maximum trunk rotation velocity (7.8%) demonstrated the greatest influence on pitch velocity. Gradient boosting machines demonstrated better calibration and reduced RMSE compared to regression. The influence of lead leg ground reaction force resultant and trunk and arm kinematics on pitch velocity demonstrates the interdependent relationship of the entire kinetic chain during the pitching motion. Coaches, players, and performance professionals should focus on the identified metrics when designing pitch velocity improvement programs.
Journal Article
Evaluation and Analysis of the Accuracy of Open-Source Software and Online Services for PPP Processing in Static Mode
by
Padilla-Velazco, Jorge
,
Gaxiola-Camacho, J. Ramon
,
Vázquez-Ontiveros, Jesus René
in
Accuracy
,
Artificial satellites in navigation
,
Comparative analysis
2023
It has been proven that precise point positioning (PPP) is a well-established technique to obtain high-precision positioning in the order between centimeters and millimeters. In this context, different studies have been carried out to evaluate the performance of PPP in static mode as a possible alternative to the relative method. However, only a few studies have evaluated the performance of a large number of different open-source software programs and have focused extensively on online free PPP services. Therefore, in this paper, a comprehensive comparison of processing in static mode between different open-source software and the online free PPP services is developed. For the evaluation, different GNSS observation files collected at 45 International GNSS Service (IGS) stations distributed worldwide were processed in static PPP mode. Within this frame of reference, ten open-source PPP software and five online free PPP services were studied. The results from the processing strategy demonstrate that it is possible to obtain precision in the order of millimeters with both open-source software and online PPP services. In addition, online PPP services experienced better performance than some other specialized PPP software. In summary, the results show that the daily solutions for the E (East), N (North), and U (Up) components estimated by the ten open-source software and by the five online free PPP services can reach millimeter precision for some stations. Among the open-source software, the PRIDE-PPPAR presented the best performance with a Root Mean Square Error (RMSE) of 5.52, 5.40, and 6.79 mm in the E, N, and U components, respectively. Alternatively, in the case of the online free PPP services, the APPS and CSRS-PPP produced the most accurate results, with RMSE values less than 12 mm for the three components. Finally, the open-source software and online free PPP services experienced similar positioning performance in the horizontal and vertical components, demonstrating that both can be implemented in static mode without compromising the accuracy of the measurement.
Journal Article
Imputing missing values using cumulative linear regression
2019
The concept of missing data is important to apply statistical methods on the dataset. Statisticians and researchers may end up to an inaccurate illation about the data if the missing data are not handled properly. Of late, Python and R provide diverse packages for handling missing data. In this study, an imputation algorithm, cumulative linear regression, is proposed. The proposed algorithm depends on the linear regression technique. It differs from the existing methods, in that it cumulates the imputed variables; those variables will be incorporated in the linear regression equation to filling in the missing values in the next incomplete variable. The author performed a comparative study of the proposed method and those packages. The performance was measured in terms of imputation time, root-mean-square error, mean absolute error, and coefficient of determination $\\lpar {\\bi R}^2\\rpar $(R2). On analysing on five datasets with different missing values generated from different mechanisms, it was observed that the performances vary depending on the size, missing percentage, and the missingness mechanism. The results showed that the performance of the proposed method is slightly better.
Journal Article
Extreme gradient boosting (XGBoost) method in making forecasting application and analysis of USD exchange rates against rupiah
by
Sholahuddin, A
,
Islam, S F N
,
Abdullah, A S
in
Datasets
,
Economic analysis
,
Economic conditions
2021
Economic conditions in Indonesia are still unstable, causing the US dollar exchange rate to increase. This is because most international transactions in Indonesia use US dollars. Prediction or forecasting is chosen as one of the important things in choosing a market to invest in buying and selling. This research will focus on making forecasting applications and analyzing the exchange rate of USD against rupiah based on time series data or temporal datasets from the Investing.com site using machine learning methods, namely Extreme Gradient Boosting (XGBoost). Applications created using the python programming language and streamlit framework. Modeling is carried out using the Knowledge Discovery in Database (KDD) methodology with the stages of dividing the dataset with a 50:50 percentage share into test and train data. The modeling uses hyperparameter tuning values, namely n_estimators = 1000, max_depth = 1, x_colsample_bytree = 0.9894, x_gamma = 0.9989, x_min_child = 1.0, x_reg_lamda = 0.2381, and x_subsample = 0.7063 with best loss or RMSE 451.4151. The values of Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE) when making the model were 6.61374% and 3.95485%. Meanwhile, when testing the model, the RMSE is 0.23577% and MAPE is 0.11643%.
Journal Article
Quality assessment of fresh tea leaves by estimating total polyphenols using near infrared spectroscopy
by
Tudu, Bipan
,
Hazarika, Ajanto Kumar
,
Chanda, Somdeb
in
Algorithms
,
Correlation coefficient
,
Correlation coefficients
2018
This paper reports on the development of an integrated leaf quality inspecting system using near infrared reflectance (NIR) spectroscopy for quick and in situ estimation of total polyphenol (TP) content of fresh tea leaves, which is the most important quality indicator of tea. The integrated system consists of a heating system to dry the fresh tea leaves to the level of 3–4% moisture, a grinding and sieving system fitted with a 250 micron mesh sieve to make fine powder from the dried leaf. Samples thus prepared are transferred to the NIR beam and TP is measured instantaneously. The wavelength region, the number of partial least squares (PLS) component and the choice of preprocessing methods are optimized simultaneously by leave-one-sample out cross-validation during the model calibration. In order to measure polyphenol percentage in situ, the regression model is developed using PLS regression algorithm on NIR spectra of fifty-five samples. The efficacy of the model developed is evaluated by the root mean square error of cross-validation, root mean square error of prediction and correlation coefficient (R2) which are obtained as 0.1722, 0.5162 and 0.95, respectively.
Journal Article
Groundwater level prediction using genetic programming: the importance of precipitation data and weather station location on model accuracy
2020
Groundwater (GW) level prediction is important for effective GW resource management. It is hypothesized that using precipitation data in GW level modelling will increase the overall accuracy of the results and that the distance of the observation well to the weather station (where precipitation data are obtained) will affect the model outcome. Here, genetic programming (GP) was used to predict GW level fluctuation in multiple observation wells under three scenarios to test these hypotheses. In Scenario 1, GW level and precipitation data were used as input data. Scenarios 2 only had GW level data as inputs to the model, and in Scenarios 3, only precipitation data were used as inputs. Long-term GW level time series data covering a period of 8 years were used to train and test the GP model. Further, to examine the effect of data from previous time periods on the accuracy of GW level prediction, 12 models with input data up to 12 months prior to the current period were investigated. Model performance was evaluated using two criteria, coefficient of determination (R2) and root mean square error (RMSE). Results show that when predicting GW levels through GP, using GW level and precipitation data together (Scenario 1) produces results with higher accuracy compared to only using GW level (Scenario 2) or precipitation data (Scenario 3). Additionally, it was found that model accuracy was highest for the well located closest to the weather station (where precipitation data were collected), demonstrating the importance of weather station location in GW level prediction. It was also found that using data from up to six previous time periods (months) can be the most efficient combination of input data for accurate predictions. The findings from this study are useful for increasing the prediction accuracy of GW level variations in unconfined aquifers for sustainable GW resource management.
Journal Article
Particle Swarm Optimization-Based Variational Mode Decomposition for Ground Penetrating Radar Data Denoising
2022
Ground Penetrating Radar (GPR) has become a widely used technology in geophysical prospecting. The Variational Mode Decomposition (VMD) method is a fully non-recursive signal decomposition method with noise robustness for GPR data processing. The VMD algorithm determines the central frequency and bandwidth of each Intrinsic Mode Function (IMF) by iteratively searching for the optimal solution of the variational mode and is capable of adaptively and effectively dividing the signal in the frequency domain into the many IMFs. However, the penalty parameter α and the number of IMFs K in VMD processing are determined depending on manual experience, which are important parameters affecting the decomposition results. In this paper, we propose a method to automatically search the parameters α and K optimally by Particle Swarm Optimization (PSO) algorithm. Then the signal-to-noise ratio (SNR) and root-mean-square error (RMSE) are used to judge the best superposition of the IMFs for data reconstruction, and the process is data-driven without human subjective intervention. The proposed method is used to process the field data, and the reconstruction data show that this innovative VMD processing can effectively improve the SNR and highlight the target reflections, even some targets not found in pre-processing are also revealed.
Journal Article