Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
2 result(s) for "rotated conic sections"
Sort by:
A Unified General Theory of Conic Sections via the Conic Radical
In this paper, we bring forth several new general formulae in the classic study of conics in the Analytic Geometry: the coordinates of all vertices and focal points of arbitrary parabolas, ellipses, and hyperbolas; lengths for all latera recta from any non-degenerate conic section; equations describing straight lines whose limited-slope contents stand on exactly equal footing as focal axes, latera recta, and directrices from every non-degenerate conic section; and, respectively, these ones characterizing asymptotes for each non-degenerate hyperbola. All these general results work regardless of whether the conics in question are rotated or not on the Cartesian plane, because all of them depend only on the coefficients of the general conic equation, making the rotation angle irrelevant for the analysis of conic sections.
Scrutinizing the General Conic Equation
We present a general formula that transforms any conic of the form Ax2+Bxy+Cy2+Dx+Ey+F=0, with B≠0, into A′(x′)2+C′(y′)2+D′x′+E′y′+F=0, without requiring the rotation angle θ. This directly eliminates the cross term xy, simplifying the rotated conics analysis. As consequences, we obtain new formulae that remove both rotations and translations, a novel proof of the discriminant criterion, improved expressions for eccentricity, and a detailed taxonomy of all loci described by the general conic equation.