Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
228
result(s) for
"sagebrush ecosystems"
Sort by:
Precipitation Intensification Increases Shrub Dominance in Arid, Not Mesic, Ecosystems
by
Palmquist, Kyle A
,
Kulmatiski, Andrew
,
Holdrege, Martin C
in
Annual precipitation
,
Aridity
,
Biomass
2023
Precipitation events have been predicted and observed to become fewer, but larger, as the atmosphere warms. Water-limited ecosystems are especially sensitive to changes in water cycling, yet evidence suggests that productivity may either increase or decrease in response to precipitation intensification. Interactions among climate, soil properties, and vegetation type may explain different responses, but this is difficult to experimentally test over large spatial scales. Simulation modeling may reveal the mechanisms through which climate, soils, and vegetation interact to affect plant growth. We use an individual-based plant ecohydrological model to simulate the effects of 25%, 50%, and 100% increases in precipitation event sizes on water cycling and shrub, grass, and forb biomass in 200 shrub-steppe sites spanning 651,000 km2 of the Intermountain West, USA. Simulations did not change annual precipitation amounts and were performed for 0, 3, and 5 °C warming. Larger precipitation events decreased evaporation and ‘pushed’ water into shrub root zones in arid and semi-arid sites, but ‘pushed’ water below shrub root zones in mesic sites resulting in increased shrub biomass in arid and semi-arid, but not mesic, sites. Positive effects of precipitation intensification on shrub growth partially counteracted negative effects of warming. Grasses and forbs showed no consistent response to precipitation intensification. Results indicate that increased precipitation intensity creates a competitive advantage for shrubs in arid and semi-arid sites. This advantage results in greater shrub relative abundance and suggests that precipitation intensification contributes to woody plant encroachment observed globally in arid and semi-arid ecosystems.
Journal Article
Broad-scale occurrence of a subsidized avian predator: Reducing impacts of ravens on sage-grouse and other sensitive prey
by
Jackson, Pat J.
,
Coates, Peter S.
,
Brussee, Brianne E.
in
Agricultural management
,
altitude
,
anthropogenic activities
2018
1. Expanding human enterprise across remote environments impacts numerous wildlife species. Anthropogenic resources provide subsidies for generalist predators that can lead to cascading effects on prey species at lower trophic levels. A fundamental challenge for applied ecologists is to disentangle natural and anthropogenic influences on species occurrence, and subsequently develop spatially explicit models to help inform management and conservation decisions. 2. Using Bayesian hierarchical occupancy models, we mapped the broad-scale occurrence of common ravens Corvus corax as a function of natural and anthropogenic landscape covariates using >15,000 point count surveys performed during 2007-2016 within the Great Basin region, USA. Raven abundance and distribution is substantially increasing across the American west due to unintended anthropogenic resource subsidies. Importantly, ravens prey on eggs and chicks of numerous species including greater sage-grouse Centrocercus urophasianus, an indicator species whos decline is at the centre of national conservation strategies and land-use policies. 3. Anthropogenic factors that contributed to greater raven occurrence were: increased road density, presence of transmission lines, agricultural activity, and presence of roadside rest areas. Natural landscape characteristics included lower elevations with greener vegetation (Normalized Difference Vegetation Index), greater stream and habitat edge densities, and lower percentages of big sagebrush Artemisia tridentata spp. 4. Interactions between anthropogenic sources of nesting substrate and food subsidies suggested that raven occurrence increased multiplicatively when these resource subsidies co-occurred. Overall, the average probability of raven occurrence estimated within sagebrush ecosystems of the study area was c. 0.83. 5. Synthesis and applications. W e demonstrate how anthropogenic factors can be disentangled from natural effects when making spatially explicit predictions of subsidized predators occurring across expansive landscapes. This approach can guide management decisions where subsidized predators overlap sensitive prey habitats. For example, we identify areas where elevated raven occurrence coincides with breeding sage-grouse concentration areas and appears to be largely driven by anthropogenic factors. Management applications could focus on reducing raven access to anthropogenic subsidies in these areas, while prioritizing habitat improvements for sage-grouse elsewhere. Our approach is applicable to other species where widespread survey data are available.
Journal Article
Combining resilience and resistance with threat‐based approaches for prioritizing management actions in sagebrush ecosystems
by
Chambers, Jeanne C.
,
Short, Karen C.
,
Schlaepfer, Daniel R.
in
Anthropogenic factors
,
Arid zones
,
Biodiversity
2023
The sagebrush biome is a dryland region in the western United States experiencing rapid transformations to novel ecological states. Threat‐based approaches for managing anthropogenic and ecosystem threats have recently become prominent, but successfully mitigating threats depends on the ecological resilience of ecosystems. We used a spatially explicit approach for prioritizing management actions that combined a threat‐based model with models of resilience to disturbance and resistance to annual grass invasion. The threat‐based model assessed geographic patterns in sagebrush ecological integrity (SEI) to identify core sagebrush, growth opportunity, and other rangeland areas. The resilience and resistance model identified ecologically relevant climate and soil water availability indicators from process‐based ecohydrological models. The SEI areas and resilience and resistance indicators were consistent—the resilience and resistance indicators showed generally positive relationships with the SEI areas. They also were complementary—SEI areas provided information on intact sagebrush areas and threats, while resilience and resistance provided information on responses to disturbances and management actions. The SEI index and resilience and resistance indicators provide the basis for prioritizing conservation and restoration actions and determining appropriate strategies. The difficulty and time required to conserve or restore SEI areas increase as threats increases and resilience and resistance decrease.
Journal Article
Evaluating the Economic Efficiency of Fuel Reduction Treatments in Sagebrush Ecosystems That Vary in Ecological Resilience and Invasion Resistance
by
Chambers, Jeanne C.
,
Bridges-Lyman, Thomas A.
,
Ellsworth, Lisa M.
in
Analysis
,
benefit–cost analysis
,
Cost benefit analysis
2024
The concepts of resilience and resistance (R&R) have been used to improve wildland fuel treatment outcomes by identifying parts of the landscape that are more likely to respond well to treatment. This study examined how the economic benefits and costs of fuel treatments in sagebrush (Artemisia spp.) ecosystems varied with the resilience and resistance properties of the treatment site. Generalized ecological models were developed for the economic analysis of fuel treatments that integrated ecological succession, annual grass invasion, pinyon–juniper expansion, and wildfire to simulate ecosystem dynamics over time. The models incorporated resilience and resistance by varying model parameters related to each plant community’s ability to resist annual grass invasion and recover post-disturbance. Simulations produced estimates of the expected (ex ante) benefit–cost ratio for each treatment. The approach also considered the benefits associated with the system remaining in an ecologically favorable condition, allowing us to report a more holistic measure of the net economic benefits of fuel treatments. The results from the simulations indicated fuel treatment was economically efficient in late-successional sagebrush and early-successional juniper in mountain big sagebrush associations. For sagebrush associations where treatment was economically efficient, higher R&R status sites had higher benefit–cost ratios. The results suggested that treatment costs were more determinative of economic efficiency than treatment benefits.
Journal Article
Post‐fire vegetation response at the woodland–shrubland interface is mediated by the pre‐fire community
by
Chambers, Jeanne C.
,
Board, David
,
Urza, Alexandra K.
in
annual invasive grass
,
biotic legacy
,
Bromus tectorum
2017
Understanding the drivers of ecosystem responses to disturbance is essential for management aimed at maintaining or restoring ecosystem processes and services, especially where invasive species respond strongly to disturbance. In this study, we used repeat vegetation surveys from a network of prescribed fire treatments at the woodland–shrubland interface in the Shoshone Mountains, Nevada, USA, to investigate post‐fire responses of the understory plant community. First, we characterized post‐fire community trajectories for sites located along an elevational gradient, hypothesizing a positive relationship between elevation and resistance to invasion. Unburned understory communities and their responses to disturbance differed along the gradient. As hypothesized, lower elevations experienced greater species turnover and higher invasive annual grass (Bromus tectorum) cover after fire. Second, we characterized post‐fire plant community trajectories for sites with varying levels of pre‐fire pinyon and juniper cover, hypothesizing that pre‐fire tree dominance and associated reductions in perennial understory species lead to less predictable post‐fire trajectories. Among sites with low‐to‐moderate tree cover, burning largely eliminated differences in understory composition, suggesting that biotic legacies were sufficient to result in predictable trajectories. In contrast, sites with high pre‐fire tree cover transitioned into an annual forb‐dominated community with sparse vegetation cover, suggesting that the loss of the understory community initiated unpredictable and divergent post‐fire trajectories. Because plant communities were still changing four years after fire, it is unclear whether the alternate trajectories in sites with high tree cover will result in the formation of alternate states, or whether community composition will eventually converge with other sites at the same elevation. Results indicate that careful evaluation of site characteristics can be used to predict treatment outcomes at the woodland–shrubland interface, and to guide the appropriate use of prescribed fire or other management practices.
Journal Article
Predicting greater sage‐grouse habitat selection at the southern periphery of their range
by
Kohl, Michel
,
Baxter, Rick
,
Frey, Nicki
in
Agricultural development
,
Agricultural management
,
Algorithms
2020
Mapping suitable habitat is an important process in wildlife conservation planning. Species distribution reflects habitat selection processes occurring across multiple spatio‐temporal scales. Because habitat selection may be driven by different factors at different scales, conservation planners require information at the scale of the intervention to plan effective management actions. Previous research has described habitat selection processes shaping the distribution of greater sage‐grouse (Centrocercus urophasianus; sage‐grouse) at the range‐wide scale. Finer‐scale information for applications within jurisdictional units inside the species range is lacking, yet necessary, because state wildlife agencies are the management authority for sage‐grouse in the United States. We quantified seasonal second‐order habitat selection for sage‐grouse across the state of Utah to produce spatio‐temporal predictions of their distribution at the southern periphery of the species range. We used location data obtained from sage‐grouse marked with very‐high‐frequency radio‐transmitters and lek location data collected between 1998 and 2013 to quantify species habitat selection in relation to a suite of topographic, edaphic, climatic, and anthropogenic variables using random forest algorithms. Sage‐grouse selected for greater sagebrush (Artemisia spp.) cover, higher elevations, and gentler slopes and avoided lower precipitations and higher temperatures. The strength of responses to habitat variables varied across seasons. Anthropogenic variables previously reported as affecting their range‐wide distribution (i.e., roads, powerlines, communication towers, and agricultural development) were not ranked as top predictors at our focal scale. Other than strong selection for sagebrush cover, the responses we observed differed from what has been reported at the range‐wide scale. These differences likely reflect the unique climatic, geographic, and topographic context found in the southern peripheral area of the species distribution compared to range‐wide environmental gradients. Our results highlight the importance of considering appropriateness of scale when planning conservation actions for wide‐ranging species.
We used random forest algorithms to map seasonal habitat selection for greater sage‐grouse at the southern periphery of their range. Results will provide scale‐appropriate information for management decisions at the state jurisdiction level in Utah.
Journal Article
Linking resource selection to population performance spatially to identify species' habitat across broad scales: An example of greater sage‐grouse in a distinct population segment
by
Casazza, Michael L.
,
Mathews, Steven R.
,
Brussee, Brianne E.
in
Animal reproduction
,
Applied Ecology
,
Brood rearing
2024
Management decisions often focus on the habitat selection of marked individuals without considering the contribution to demographic performance in selected habitats. Because habitat selection is not always adaptive, understanding the spatial relationship between habitat selection and demographic performance is critical to management decisions. Mapping both habitat selection and demographic performance for species of conservation concern can help guide population‐scale conservation efforts. We demonstrate a quantitative approach to differentiate areas supporting selection and survival at large spatial extents. As a case study, we applied this approach to greater sage‐grouse (Centrocercus urophasianus; hereafter, sage‐grouse), an indicator species for sagebrush ecosystems. We evaluated both habitat selection and survival across multiple reproductive life stages (nesting, brood‐rearing) in the Bi‐State Distinct Population Segment, a genetically distinct and geographically isolated population of sage‐grouse on the southwestern edge of the species' range. Our approach allowed us to identify both mismatches between selection and survival and trade‐offs between reproductive life stages. These findings suggest resource demands vary across time, with predation risk being a dominant driver of habitat selection during nesting and early brood‐rearing periods when chicks are smaller and flightless, whereas access to forage resources becomes more important during late brood rearing when resources become increasingly limited. Moving beyond identifying and managing habitat solely based on species occupancy or use by incorporating demographic measures allows managers to tailor actions to their specific goals; for example, protections of areas that support high selection and high survival and restoration actions focused on increasing survival in areas of high selection and low survival.
Habitat selection is not always adaptive, so understanding the link between habitat selection and demographic performance is critical to management decisions. We evaluated both selection and survival across multiple reproductive life stages in a genetically distinct and geographically isolated population of greater sage‐grouse, an indicator species for sagebrush ecosystems. Our approach allowed us to identify both mismatches between selection and survival and trade‐offs between life stages.
Journal Article
The potential importance of unburned islands as refugia for the persistence of wildlife species in fire‐prone ecosystems
by
Meddens, Arjan J. H.
,
Steenvoorden, Jasper
,
Martinez, Anthony J.
in
Bromus tectorum
,
Climate change
,
Composition
2019
The persistence of wildlife species in fire‐prone ecosystems is under increasing pressure from global change, including alterations in fire regimes caused by climate change. However, unburned islands might act to mitigate negative effects of fire on wildlife populations by providing habitat in which species can survive and recolonize burned areas. Nevertheless, the characteristics of unburned islands and their role as potential refugia for the postfire population dynamics of wildlife species remain poorly understood.
We used a newly developed unburned island database of the northwestern United States from 1984 to 2014 to assess the postfire response of the greater sage‐grouse (Centrocercus urophasianus), a large gallinaceous bird inhabiting the sagebrush ecosystems of North America, in which wildfires are common. Specifically, we tested whether prefire and postfire male attendance trends at mating locations (leks) differed between burned and unburned areas, and to what extent postfire habitat composition at multiple scales could explain such trends.
Using time‐series of male counts at leks together with spatially explicit fire history information, we modeled whether male attendance was negatively affected by fire events. Results revealed that burned leks often exhibit sustained decline in male attendance, whereas leks within unburned islands or >1.5 km away from fire perimeters tend to show stable or increasing trends.
Analyses of postfire habitat composition further revealed that sagebrush vegetation height within 0.8 km around leks, as well elevation within 0.8 km, 6.4 km, and 18 km around leks, had a positive effect on male attendance trends. Moreover, the proportion of the landscape with cheatgrass (Bromus tectorum) cover >8% had negative effects on male attendance trends within 0.8 km, 6.4 km, and 18 km of leks, respectively.
Synthesis and applications. Our results indicate that maintaining areas of unburned vegetation within and outside fire perimeters may be crucial for sustaining sage‐grouse populations following wildfire. The role of unburned islands as fire refugia requires more attention in wildlife management and conservation planning because their creation, protection, and maintenance may positively affect wildlife population dynamics in fire‐prone ecosystems.
Unburned islands of vegetation within fire perimeters might mitigate the negative effects of wildfire on wildlife populations in fire‐prone ecosystems, but they remain poorly understood. In this article, we researched and found out that unburned islands allow for the persistence of greater sage‐grouse after fire, thus acting as potential fire refugia. This is important for management because it suggests that creating, protecting, and enhancing unburned islands within fire perimeters may positively impact wildlife populations in these ecosystems.
Journal Article
Resource selection of apex raptors: implications for siting energy development in sagebrush and prairie ecosystems
by
Squires, John R.
,
Kennedy, Patricia L.
,
Olson, Lucretia E.
in
Alternative energy sources
,
Animal behavior
,
Aquila chrysaetos
2020
There is an urgent need to understand ecological responses of avian species to the rapidly expanding human footprint of conventional and renewable energy development in sagebrush and prairie ecosystems. The ferruginous hawk (Buteo regalis) and golden eagle (Aquila chrysaetos) are two sympatric raptors of conservation concern that occupy and flourish in the most intact sagebrush steppe region remaining in North America. To understand these species’ use of habitat relative to energy development, we built resource selection functions using a spatially representative sample of occupied nesting territories collected in 2010–2011 and remotely sensed environmental variables across an extensive study area (186,693 km2). We used the resulting predicted resource selection maps to evaluate spatial overlap between the nesting habitats of these sympatric raptor species, as well as overlap of predicted habitat with potential development of oil/gas and wind energy resources. Remotely sensed variables were very effective in modeling patterns of nest‐site selection based on fivefold cross‐validation (>0.93 Spearman‐rank correlation) and validation with an independent dataset of historical nests collected from 2000 to 2009. Topographic roughness and intermediate levels of spring precipitation were the strongest drivers of differences in habitat use between ferruginous hawks and golden eagles. We did not detect a strong signal of avoidance of energy infrastructure by either species at current levels of development and both nested closer than expected to gravel/dirt roads associated with oil and gas infrastructure. However, extensive overlap of nesting habitat more selected by ferruginous hawks and golden eagles with areas of actual and potential energy development suggests both species are at risk from future habitat fragmentation. Given that 80% of nests are> 1 km from oil/gas wells, we believe the density of energy‐related disturbance present during our study was insufficient to drive patterns of resource selection for ferruginous hawks when considered at broad spatial scales. However, it was beyond the scope of our study to predict long‐term, population‐level responses. We suggest rigorous monitoring of long‐term trends in occupancy, productivity, and distribution is warranted for populations of ferruginous hawk and golden eagle in sagebrush and prairie ecosystems exposed to increased energy development.
Journal Article
Filling the interspace—restoring arid land mosses: source populations, organic matter, and overwintering govern success
2016
Biological soil crusts contribute to ecosystem functions and occupy space that could be available to invasive annual grasses. Given disturbances in the semiarid shrub steppe communities, we embarked on a set of studies to investigate restoration potential of mosses in sagebrush steppe ecosystems. We examined establishment and growth of two moss species common to the Great Basin, USA: Bryum argenteum and Syntrichia ruralis from two environmental settings (warm dry vs. cool moist). Moss fragments were inoculated into a third warm dry setting, on bare soil in spring and fall, both with and without a jute net and with and without spring irrigation. Moss cover was monitored in spring seasons of three consecutive years. Both moss species increased in cover over the winter. When Bryum received spring irrigation that was out of sync with natural precipitation patterns, moss cover increased and then crashed, taking two seasons to recover. Syntrichia did not respond to the irrigation treatment. The addition of jute net increased moss cover under all conditions, except Syntrichia following fall inoculation, which required a second winter to increase in cover. The warm dry population of Bryum combined with jute achieved on average 60% cover compared to the cool moist population that achieved only 28% cover by the end of the study. Differences were less pronounced for Syntrichia where moss from the warm dry population with jute achieved on average 51% cover compared to the cool moist population that achieved 43% cover by the end of the study. Restoration of arid land mosses may quickly protect soils from erosion while occupying sites before invasive plants. We show that higher moss cover will be achieved quickly with the addition of organic matter and when moss fragments originate from sites with a climate that is similar to that of the restoration site.
Arid land mosses show potential for rapid restoration of native vegetative cover with minimal effort. Restored mosses showed significant increases in cover following the winter season, with the addition of organic matter, and when source material was from a similar climate as the recipient site.
Journal Article