Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
694 result(s) for "salt and cold tolerance"
Sort by:
The enhancement of tolerance to salt and cold stresses by modifying the redox state and salicylic acid content via the cytosolic malate dehydrogenase gene in transgenic apple plants
Summary In this study, we characterized the role of an apple cytosolic malate dehydrogenase gene (MdcyMDH) in the tolerance to salt and cold stresses and investigated its regulation mechanism in stress tolerance. The MdcyMDH transcript was induced by mild cold and salt treatments, and MdcyMDH‐overexpressing apple plants possessed improved cold and salt tolerance compared to wild‐type (WT) plants. A digital gene expression tag profiling analysis revealed that MdcyMDH overexpression largely altered some biological processes, including hormone signal transduction, photosynthesis, citrate cycle and oxidation–reduction. Further experiments verified that MdcyMDH overexpression modified the mitochondrial and chloroplast metabolisms and elevated the level of reducing power, primarily caused by increased ascorbate and glutathione, as well as the increased ratios of ascorbate/dehydroascorbate and glutathione/glutathione disulphide, under normal and especially stress conditions. Concurrently, the transgenic plants produced a high H2O2 content, but a low O2·− production rate was observed compared to the WT plants. On the other hand, the transgenic plants accumulated more free and total salicylic acid (SA) than the WT plants under normal and stress conditions. Taken together, MdcyMDH conferred the transgenic apple plants a higher stress tolerance by producing more reductive redox states and increasing the SA level; MdcyMDH could serve as a target gene to genetically engineer salt‐ and cold‐tolerant trees.
The maize ATP-binding cassette (ABC) transporter ZmMRPA6 confers cold and salt stress tolerance in plants
Key message ZmMRPA6 was cloned and characterized as the first ATP-binding cassette (ABC) transporter in maize to be proven to participate in cold and salt tolerance. Homologous genes AtABCC4 and AtABCC14 of ZmMRPA6 also responded to salt stress. ATP-binding cassette (ABC) proteins are major transmembrane transporters that play significant roles in plant development against various abiotic stresses. However, available information regarding stress-related ABC genes in maize is minimal. In this study, a maize ABC transporter gene, ZmMRPA6 , was identified through genome-wide association analysis (GWAS) for cold tolerance in maize seeds germination and functionally characterized. During germination and seedling stages, the zmmrpa6 mutant exhibited enhanced resistance to cold or salt stress. Mutated of ZmMRPA6 did not affect the expression of downstream response genes related cold or salt response at the transcriptional level. Mass spectrometry analysis revealed that most of the differential proteins between zmmrpa6 and wild-type plants were involved in response to stress process including oxidative reduction, hydrolase activity, small molecule metabolism, and photosynthesis process. Meanwhile, the plants which lack the ZmMRPA6 homologous genes AtABCC4 or AtABCC14 were sensitive to salt stress in Arabidopsis . These results indicated that ZmMRPA6 and its homologous genes play a conserved role in cold and salt stress, and functional differentiation occurs in monocotyledonous and dicotyledonous plants. In summary, these findings dramatically improved our understanding of the function of ABC transporters resistance to abiotic stresses in plants.
Phytomelatonin: a universal abiotic stress regulator
This review summarizes phytomelatonin-modulated stress responses and plant development pathways, and highlights interactions between melatonin and other phytohormones. Abstract Melatonin, a derivative of tryptophan, was first detected in plant species in 1995 and it has been shown to be a diverse regulator during plant growth and development, and in stress responses. Recently, great progress has been made towards determining the detailed functions of melatonin in plant responses to abiotic stress. Melatonin priming improves plant tolerance to cold, heat, salt, and drought stresses through regulation of genes involved in the DREB/CBF, HSF, SOS, and ABA pathways, respectively. As a scavenger of free radicals, melatonin also directly detoxifies reactive oxygen species, thus alleviating membrane oxidation. Abiotic stress-inhibited photosynthesis is partially recovered and metabolites accumulate in the presence of melatonin, leading to improved plant growth, delayed leaf senescence, and increased stress tolerance. In this review, we summarize the interactions of melatonin with phytohormones to regulate downstream gene expression, protein stabilization, and epigenetic modification in plants. Finally, we consider the need for, and approaches to, the identification of melatonin receptors and components during signaling transduction pathways.
A R2R3-type MYB gene,OsMYB2, is involved in salt, cold, and dehydration tolerance in rice
MYB-type transcription factors play a diverse role in plant development and response to abiotic stress. This study isolated a rice R2R3-type MYB gene,OsMYB2, and functionally characterized its role in tolerance to abiotic stress by generating transgenic rice plants with overexpressing and RNA interferenceOsMYB2. Expression ofOsMYB2was up-regulated by salt, cold, and dehydration stress. OsMYB2 was localized in the nucleus with transactivation activity. No difference in growth and development between theOsMYB2-overexpressing and wild-type plants was observed under normal growth conditions, but theOsMYB2-overexpressing plants were more tolerant to salt, cold, and dehydration stresses and more sensitive to abscisic acid than wild-type plants. TheOsMYB2-overexpressing plants accumulated greater amounts of soluble sugars and proline than wild-type plants under salt stress. Overexpression ofOsMYB2enhanced up-regulation of genes encoding proline synthase and transporters. TheOsMYB2-overexpressing plants accumulated less amounts of H₂O₂ and malondialdehyde. The enhanced activities of antioxidant enzymes, including peroxidase, superoxide dismutase, and catalase, may underlie the lower H₂O₂ contents inOsMYB2-overexpressing plants. There was greater up-regulation of stress-related genes, includingOsLEA3,OsRab16A, andOsDREB2A, in theOsMYB2-overexpressing plants. Microarray analysis showed that expression of numerous genes involving diverse functions in stress response was altered in theOsMYB2-overexpressing plants. These findings suggest thatOsMYB2encodes a stress-responsive MYB transcription factor that plays a regulatory role in tolerance of rice to salt, cold, and dehydration stress.
The NAC-type transcription factor GmNAC20 improves cold, salinity tolerance, and lateral root formation in transgenic rice plants
NAC-type transcription factors are crucial players in the abiotic stress responses of plants. Soybean NAC-type transcription factor GmNAC20 was transformed into rice genome via Agrobacterium method of transformation to improve abiotic stress tolerance. Integration and expression of GmNAC20 were verified by the DNA blot hybridization, immunoblotting, RT-PCR, and quantitative RT-PCR in T3 generation of transgenic rice plants. Significant expression of GmNAC20 was found in transgenic plants under salinity, cold, and IAA treatments. The transgenic rice plants expressing GmNAC20 displayed enhanced salinity and cold stress tolerance via upregulating the abiotic stress–responsive genes. Furthermore, T3 transgenic plants retained relative water content, chlorophyll content with enhanced accumulation of proline content than wild-type plants under salinity, and cold stress environments. The decrease in MDA content and electrolyte leakage with a significant increase in antioxidant enzyme activities were noticed in transgenic rice plants under either salinity or cold stress conditions, compared to wild-type plants. Overexpression of GmNAC20 in rice plants also induced the lateral root formation, associated with upregulation of auxin signaling–related genes. Taken together, our results indicated that GmNAC20 acts as a positive regulator for conferring salinity and cold tolerance in rice plants and appropriate candidate for improving salinity and cold stress in other important food crops
Combined transcriptomic and metabolomic analyses of high temperature stress response of quinoa seedlings
Background Quinoa ( Chenopodium quinoa Willd.) originates in high altitude areas, such as the Andes, and has some inherent characteristics of cold, drought, and salinity tolerance, but is sensitive to high temperature. Results To gain insight into the response mechanism of quinoa to high temperature stress, we conducted an extensive targeted metabolomic study of two cultivars, Dianli-3101 and Dianli-3051, along with a combined transcriptome analysis. A total of 794 metabolites and 54,200 genes were detected, in which the genes related to photosynthesis were found down-regulated at high temperatures, and two metabolites, lipids and flavonoids, showed the largest changes in differential accumulation. Further analysis of the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and transcription factors revealed that quinoa inhibits photosynthesis at high temperatures, and the possible strategies being used for high temperature stress management are regulation of heat stress transcription factors ( HSFs ) to obtain heat tolerance, and regulation of purine metabolism to enhance stress signals for rapid response to high temperature stress. The tolerant genotype could have an enhanced response through lower purine levels. The induction of the stress response could be mediated by HSF transcription factors. The results of this study may provide theoretical references for understanding the response mechanism of quinoa to high temperature stress, and for screening potential high temperature tolerant target genes and high temperature tolerant strains. Conclusions These findings reveal the regulation of the transcription factor family HSF and the purinergic pathway in response to high temperature stress to improve quinoa varieties with high temperature tolerance.
Cold-adapted characteristics and gene knockout of alkyl hydroperoxide reductase subunit C in Antarctic Psychrobacter sp. ANT206
Alkyl hydroperoxide reductase subunit C (AhpC) contributes to the cellular defense against reactive oxygen species. However, it remains understudied in psychrophiles. Amino acid comparison demonstrated that AhpC from Psychrobacter sp. ANT206 (ANT206) (PsAhpC) revealed fewer numbers of Lys and more numbers of Gly, which might have favored higher flexibility at low temperature. The recombinant PsAhpC (rPsAhpC) was most active at 25 °C and retained 35% of its residual activity at 0 °C, indicating that it was a cold-adapted enzyme. Additionally, rPsAhpC demonstrated significant salt tolerance, sustaining its activity in the presence of 4.0 M NaCl. Molecular dynamics simulations indicated that PsAhpC had comparatively loose conformation, which facilitated reactions at low temperatures. Subsequently, an ahpc knockout mutant was constructed, and the growth rate of the knockout mutant significantly decreased, suggesting that ahpc might be crucial for the growth of ANT206 at low temperatures. The findings provide a robust foundation for further investigation into the structural features and catalytic characterization of cold-adapted AhpC. The structural characteristics of PsAhpC and its cold tolerance and salt tolerance may be applied to stress resistance breeding of various organisms. Graphical Abstract
Cold plasma treatment and exogenous salicylic acid priming enhances salinity tolerance of Oryza sativa seedlings
The present study was designed to highlight the effects of cold plasma (10 kV) treatment and priming with 2 mM salicylic acid (SA) and their combination (10 kV of plasma + 2 mM SA) on the physiological parameters and metabolism of two cultivars of Oryza sativa, i.e., Zhu Liang You 06 (ZY) and Qian You No. 1 (QY), under salinity stress (150 mM NaCl) and normal growth condition (0 mM NaCl). Seed germination and seedling growth were enhanced by SA priming and cold plasma treatment either alone or in combination under salinity stress. Photosynthetic pigments, photosynthetic gas exchange, and chlorophyll fluorescence were improved by cold plasma treatment and SA priming under salinity stress as compared to the untreated seeds. The activities of antioxidant enzymes were significantly improved by the combination of SA priming and cold plasma treatment in both cultivars under salinity stress. There were rapid changes in the cellular content of sodium (Na+) and calcium (Ca+), where the plants grown under saline conditions accumulate more Na+ and less Ca+ contents resulting in ionic imbalances. Interestingly, cold plasma and SA treatments diminished this action by reducing Na+ accumulation and increasing K+ and Ca+ contents in the plant cell under salinity stress. The activities of enzymes involved in secondary metabolism assimilation were up-regulated with cold plasma and SA priming either alone or combination under salinity stress. An increase in reactive oxygen species (ROS) accumulation and malondialdehyde (MDA) content was also observed under salinity stress condition. On contrast, seed treated with SA and plasma alone or combined resulted in a significant decrease in ROS and MDA contents under salinity stress. Our results indicated that SA priming and cold plasma treatment either alone or combined improved plant uptake of nutrients in both cultivars under stress conditions. The ultrastructural changes were observed to be more prominent in ZY than QY cultivar. Plants without SA priming or cold plasma treatments have a big vacuole due to the movement of ions into the vacuole directly from the apoplast into the vacuole through membrane vesiculation leading to membrane destabilization. However, SA priming and cold plasma treatment alone or combined helped the plants to recover their cell turgidity under salinity stress.
Application of genomics-assisted breeding for generation of climate resilient crops: Progress and prospects
Climate change affects agricultural productivity worldwide. Increased prices of food commodities are the initial indication of drastic edible yield loss, which is expected to surge further due to global warming. This situation has compelled plant scientists to develop climate change-resilient crops, which can withstand broad-spectrum stresses such as drought, heat, cold, salinity, flood and submergence, and pests along with increased productivity. Genomics appears to be a promising tool for deciphering the stress responsiveness of crop species with adaptation traits or in wild relatives towards identifying underlying genes, alleles or quantitative trait loci. Molecular breeding approaches have been proven helpful in enhancing the stress adaptation of crop plants, and recent advancement in next-generation sequencing along with high-throughput sequencing and phenotyping platforms have transformed molecular breeding to genomics-assisted breeding (GAB). In view of this, the present review elaborates the progress and prospects of GAB in improving climate change resilience in crop plants towards circumventing global food insecurity.
Overexpression of the trehalose-6-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice
Trehalose plays an important role in metabolic regulation and abiotic stress tolerance in a variety of organisms. In plants, its biosynthesis is catalyzed by two key enzymes: trehalose-6-phosphate synthase (TPS) and trehalose-6-phosphate phosphatase (TPP). The genome of rice (Oryza sativa) contains 11 OsTPS genes, and only OsTPS1 shows TPS activity. To demonstrate the physiological function of OsTPS1, we introduced it into rice and found that OsTPS1 overexpression improved the tolerance of rice seedling to cold, high salinity and drought treatments without other significant phenotypic changes. In transgenic lines overexpressing OsTPS1, trehalose and proline concentrations were higher than in the wild type and some stress-related genes were up-regulated, including WSI18, RAB16C, HSP70, and ELIP. These results demonstrate that OsTPS1 may enhance the abiotic stress tolerance of plants by increasing the amount of trehalose and proline, and regulating the expression of stress-related genes. Furthermore, we found that overexpression of some Class II TPSs also enhanced plant tolerance of abiotic stress. This work will help to clarify the role of trehalose metabolism in abiotic stress response in higher plants.