Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
1 result(s) for "scalp-to-intracranial EEG translation"
Sort by:
EEG-to-EEG: Scalp-to-Intracranial EEG Translation Using a Combination of Variational Autoencoder and Generative Adversarial Networks
A generative adversarial network (GAN) makes it possible to map a data sample from one domain to another one. It has extensively been employed in image-to-image and text-to image translation. We propose an EEG-to-EEG translation model to map the scalp-mounted EEG (scEEG) sensor signals to intracranial EEG (iEEG) sensor signals recorded by foramen ovale sensors inserted into the brain. The model is based on a GAN structure in which a conditional GAN (cGAN) is combined with a variational autoencoder (VAE), named as VAE-cGAN. scEEG sensors are plagued by noise and suffer from low resolution. On the other hand, iEEG sensor recordings enjoy high resolution. Here, we consider the task of mapping the scEEG sensor information to iEEG sensors to enhance the scEEG resolution. In this study, our EEG data contain epileptic interictal epileptiform discharges (IEDs). The identification of IEDs is crucial in clinical practice. Here, the proposed VAE-cGAN is firstly employed to map the scEEG to iEEG. Then, the IEDs are detected from the resulting iEEG. Our model achieves a classification accuracy of 76%, an increase of, respectively, 11%, 8%, and 3% over the previously proposed least-square regression, asymmetric autoencoder, and asymmetric–symmetric autoencoder mapping models.