Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
7 result(s) for "scpa"
Sort by:
Evidence for binary Smc complexes lacking kite subunits in archaea
SMC complexes play a central role in chromosome organization in all domains of life. The bacterial Smc–ScpAB complex is a three-subunit complex composed of Smc, ScpA and ScpB. ScpA bridges the two ATPase domains of the Smc homodimer, while ScpB, which belongs to the kite family of proteins, interacts with ScpA. The three subunits are known to be equally important for the function of Smc–ScpAB in bacteria. From crystallographic and biochemical studies, evidence is provided that six archaeal ScpA proteins are unable to interact with the only putative ScpB found in these species. Structure-based sequence alignment reveals that these archaeal ScpAs lack the ScpB-binding segment that is commonly present in the middle of bacterial ScpA sequences, which is thus responsible for their inability to interact with ScpB. ScpA proteins lacking the ScpB-binding segment are found to prevail in archaea. Moreover, two archaeal ScpA proteins with a longer middle region also failed to bind their putative ScpB partner. Furthermore, all or most species belonging to five out of 14 euryarchaeotal orders contain Smc and ScpA but not a detectable ScpB homologue. These data support the notion that archaeal Smc-based complexes generally function as a two-subunit complex composed of only Smc and ScpA.
Improvement of sabinene tolerance of Escherichia coli using adaptive laboratory evolution and omics technologies
Background Biosynthesis of sabinene, a bicyclic monoterpene, has been accomplished in engineered microorganisms by introducing heterologous pathways and using renewable sugar as a carbon source. However, the efficiency and titers of this method are limited by the low host tolerance to sabinene (in both eukaryotes and prokaryotes). Results In this study, Escherichia coli BL21(DE3) was selected as the strain for adaptive laboratory evolution. The strain was evolved by serial passaging in the medium supplemented with gradually increasing concentration of sabinene, and the evolved strain XYF(DE3), which exhibited significant tolerance to sabinene, was obtained. Then, XYF(DE3) was used as the host for sabinene production and an 8.43-fold higher sabinene production was achieved compared with the parental BL21(DE3), reaching 191.76 mg/L. Whole genomes resequencing suggested the XYF(DE3) strain is a hypermutator. A comparative analysis of transcriptomes of XYF(DE3) and BL21(DE3) was carried out to reveal the mechanism underlying the improvement of sabinene tolerance, and 734 up-regulated genes and 857 down-regulated genes were identified. We further tested the roles of the identified genes in sabinene tolerance via reverse engineering. The results demonstrated that overexpressions of ybcK gene of the DLP12 family, the inner membrane protein gene ygiZ, and the methylmalonyl-CoA mutase gene scpA could increase sabinene tolerance of BL21(DE3) by 127.7%, 71.1%, and 75.4%, respectively. Furthermore, scanning electron microscopy was applied to monitor cell morphology. Under sabinene stress, the parental BL21(DE3) showed increased cell length, whereas XYF(DE3) showed normal cell morphology. In addition, overexpression of ybcK, ygiZ or scpA could partially rescue cell morphology under sabinene stress and overexpression of ygiZ or scpA could increase sabinene production in BL21(DE3). Conclusions This study not only obtained a sabinene-tolerant strain for microbial production of sabinene but also revealed potential regulatory mechanisms that are important for sabinene tolerance. In addition, for the first time, ybcK, ygiZ, and scpA were identified to be important for terpene tolerance in E. coli BL21(DE3).
Study on Quasi-Static Uniaxial Compression Properties and Constitutive Equation of Spherical Cell Porous Aluminum-Polyurethane Composites
Quasi-static uniaxial compression properties and the constitutive equation of spherical cell porous aluminum-polyurethane composites (SCPA-PU composites) were investigated in this paper. The effects of relative density on the densification strain, plateau stress and energy absorption properties of the SCPA-PU composites were analyzed. It is found that the stress-strain curves of SCPA-PU composites consist of three stages: The linear elastic part, longer plastic plateau segment and densification region. The results also demonstrate that both the plateau stress and the densification strain energy of the SCPA-PU composites can be improved by increasing the relative density of the spherical cell porous aluminum (SCPA), while the densification strain of the SCPA-PU composites shows little dependence on the relative density of the SCPA. Furthermore, the applicability of three representative phenomenological models to the constitutive equations of SCPA-PU composites are verified and compared based on the experimental results. The error analysis result indicates that the Avalle model is the best model to characterize the uniaxial compression constitutive equation of SCPA-PU composites.
Multi-domain, cell-envelope proteinases of lactic acid bacteria
The multi-domain, cell-envelope proteinases encoded by the genes prtB of Lactobacillus delbrueckii subsp. bulgaricus, prtH of Lactobacillus helveticus, prtP of Lactococcus lactis, scpA of Streptococcus pyogenes and csp of Streptococcus agalactiae have been compared using multiple sequence alignment, secondary structure prediction and database homology searching methods. This comparative analysis has led to the prediction of a number of different domains in these cell-envelope proteinases, and their homology, characteristics and putative function are described. These domains include, starting from the N-terminus, a pre-pro-domain for secretion and activation, a serine protease domain (with a smaller inserted domain), two large middle domains A and B of unknown but possibly regulatory function, a helical spacer domain, a hydrophilic cell-wall spacer or attachment domain, and a cell-wall anchor domain. Not all domains are present in each cell-envelope proteinase, suggesting that these multi-domain proteins are the result of gene shuffling and domain swapping during evolution.
scpA, a new salicylate hydroxylase gene localized in salicylate/caprolactam degradation plasmids
Both caprolactams and salicylate biodegradation by Pseudomonas salicylate/caprolactam degraders are controlled by large conjugative plasmids (SAL/CAP). Some of these plasmids have been assigned to the P-7 incompatibility group. The new salicylate 1-hydroxylase gene ( scpA ) has been detected in SAL/CAP plasmids and partially sequenced. The scpA gene was equally related to the closest homolog genes nahG (NAH7), salA ( P. reinekei MT1), and nahU (pND6-1); however, the identity rate did not exceed 72–74%. The synthesis of salicylate 1-hydroxylase ScpA was not induced by salicylate. This enzyme had wide substrate specificity and exhibited the highest specific activity toward 4-methylsalicylate and nonsubstituted salicylate substrates. Furthermore, conjugative pseudomonads’ plasmids of salicylate degradation without the classical nah2 operon, which harbors only salicylate 1-hydroxylase gene nahU have been described for the first time.
Chapter 8 - A digital RF power amplification technique based on the switched-capacitor circuit
A digital power amplifier (DPA) architecture utilizes switched-capacitor techniques combined with envelope elimination and restoration (EER). The switched-capacitor PA (SCPA) operates as a linear RF envelope digital-to-analog converter (DAC) and employs a switching PA to amplify non-constant envelope-modulated signals with large peak-to-average power ratios (PAPR) at high efficiency. In addition to the standard SCPA, a class-G SCPA architecture and a power combining technique are employed to further improve the efficiency and output power, respectively. Due to the high linearity of the class-G SCPA architecture no digital pre-distortion is required. To increase the output power, four SCPAs are combined using a four-way power-combining transformer. Prototypes for all three amplifiers were fabricated and characterized. A standard SCPA prototype in a 90nm CMOS process shows maximum output power and power-added efficiency (PAE) of 25.2dBm and 45%, respectively. When amplifying an 802.11g 64-QAM orthogonal frequency-division multiplexed (OFDM) signal the average output power and PAE are 17.7dBm and 27%, respectively, with a measured EVM of 2.6%. A class-G SCPA implemented in a 65nm CMOS process shows measured peak output power and PAE of 24.3dBm and 43.5%, respectively. The average output power is 16.8dBm with a significantly improved average PAE of 33%. The ratio of the average- to peak-efficiency is 75% with an OFDM signal and the measured EVM is 2.9% without the use of digital pre-distortion techniques. Finally, the power-combined SCPA prototyped in a 90nm CMOS process delivers a higher peak output power of 27.0dBm with a peak PAE of 26%.