Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,482 result(s) for "secondary succession"
Sort by:
Nitrogen fixer abundance has no effect on biomass recovery during tropical secondary forest succession
1. Nitrogen-fixing trees (N₂ fixers) provide new nitrogen critical for rapid biomass accumulation of tropical forests during early secondary succession, but it remains unclear how the abundance of N₂ fixers in the forest community affects the growth of non-fixers or the primary productivity of the whole forest. 2. On the one hand, N₂ fixers may enhance forest productivity by providing a facultative effect through the provision of plant-available nitrogen to non-fixing trees. On the other hand, N₂ fixers may suppress the growth of non-fixers by growing faster and competing more vigorously for light and other resources. A third alternative is that the growth of N₂ fixers themselves accumulate biomass rapidly, while having a neutral effect on non-fixers, leading to an overall increase in forest biomass. 3. We examine these alternative hypotheses using 5-year tree census data from 88 plots in 44 seasonal tropical moist secondary forests (3-32 years old) across a human-modified landscape in central Panama. We examined whether N 2 fixers accumulated biomass more rapidly than non-fixers, and how relative biomass of N₂ fixers as a functional group and as individual species influenced the growth of non-fixer and whole stand primary productivity. 4. Surprisingly, we found no evidence for either a net competitive or a facilitative effect of N₂ fixers as a functional group or individual species on the biomass recovery in these young forests. N₂ fixers did not grow faster than non-fixers. Individual mortality rates were lower among N₂ fixers, but biomass losses due to mortality were similar between the two groups. Overall, we found no relationship between the relative abundance of N₂ fixers and stand primary productivity during succession. 5. Synthesis. Nitrogen-fixing trees may be critical for reducing nitrogen limitation and accelerating biomass growth during tropical secondary forest succession, thereby impacting the global carbon cycle. However, our findings indicate that, in early successional seasonal tropical moist forests, nitrogen fixers provide neither a net competitive nor a facilitative effect on non-fixing trees or the whole forest stand, likely because tropical nitrogen fixers utilize facultative fixation and hence abundance poorly approximates the ecosystem function of fixation. Our results indicate that models should not simply scale symbiotic fixation and its effects from nitrogen-fixing tree abundance.
Changes in Multi-Level Biodiversity and Soil Features in a Burned Beech Forest in the Southern Italian Coastal Mountain
In the context of global warming and increasing wildfire occurrence, this study aims to examine, for the first time, the changes in multi-level biodiversity and key soil features related to soil functioning in a burned Mediterranean beech forest. Two years after the 2017 wildfire, changes between burned and unburned plots of beech forest were analyzed for plant communities (vascular plant and cover, bryophytes diversity, structural, chorological, and ecological variables) and soil features (main chemical properties, microbial biomass and activity, bacterial community composition, and diversity), through a synchronic study. Fire-induced changes in the micro-environmental conditions triggered a secondary succession process with colonization by many native pioneer plant species. Indeed, higher frequency (e.g., Scrophularia vernalis L., Rubus hirtus Waldst. and Kit. group, and Funaria hygrometrica Hedw.) or coverage (e.g., Verbascum thapsus L. subsp. thapsus and Digitalis micrantha Roth ex Schweigg.) of the species was observed in the burned plots, whereas the typical forest species showed a reduction in frequency, but not in cover, except for Fagus sylvatica subsp. sylvatica. Overall, an increase in plant species and family richness was found in the burned plots, mainly in the herbaceous and bryophyte layers, compared to the unburned plots. Burned plots showed an increase in therophytes, chamaephytes, cosmopolites, steno-Mediterranean and Atlantic species, and a decrease in geophytes and Eurasiatic plants. Significant differences were found in burned vs. control soils for 10 phyla, 40 classes, 79 orders, 145 families, 342 genera, and 499 species of bacteria, with about 50% of each taxon over-represented and 50% under-represented in burned than in control. Changes in bacterial richness within several families (reduction in Acidobacteriaceae, Solibacteraceae, Rhodospirillaceae, and Sinobacteraceae; increase in Micrococcaceae, Comamonadaceae, Oxalobacteraceae, Pseudomonadaceae, Hymenobacteraceae, Sphingomonadaceae, Cytophagaceae, Nocardioidaceae, Opitutaceae, Solirubrobacteraceae, and Bacillaceae) in burned soil were related to fire-induced chemical changes of soil (pH, electrical conductivity, and cation exchange capacity). No evident effect of the wildfire was found on organic C content, microbial biomass (total microbial carbon and fungal mycelium) and activity, and microbial indexes (fungal percentage of microbial C, metabolic quotient, and quotient of mineralization), suggesting that soil functions remained unchanged in the burned area. Therefore, we hypothesize that, without an additional disturbance event, a re-establishment of beech forest can be expected but with an unpredictable time of post-fire succession.
The Methodology for Identifying Secondary Succession in Non-Forest Natura 2000 Habitats Using Multi-Source Airborne Remote Sensing Data
The succession process of trees and shrubs is considered as one of the threats to non-forest Natura 2000 habitats. Poland, as a member of the European Union, is obliged to monitor these habitats and preserve them in the best possible condition. If threats are identified, it is necessary to take action—as part of the so-called active protection—that will ensure the preservation of habitats in a non-deteriorated condition. At present, monitoring of Natura 2000 habitats is carried out in expert terms, i.e., the habitat conservation status is determined during field visits. This process is time- and cost-intensive, and it is subject to the subjectivism of the person performing the assessment. As a result of the research, a methodology for the identification and monitoring of the succession process in non-forest Natura 2000 habitats was developed, in which multi-sensor remote sensing data are used—airborne laser scanner (ALS) and hyperspectral (HS) data. The methodology also includes steps required to analyse the dynamics of the succession process in the past, which is done using archival photogrammetric data (aerial photographs and ALS data). The algorithms implemented within the methodology include structure from motion and dense image matching for processing the archival images, segmentation and Voronoi tessellation for delineating the spatial extent of succession, machine learning random forest classifier, recursive feature elimination and t-distributed stochastic neighbour embedding algorithms for succession species differentiation, as well as landscape metrics used for threat level analysis. The proposed methodology has been automated and enables a rapid assessment of the level of threat for a whole given area, as well as in relation to individual Natura 2000 habitats. The prepared methodology was successfully tested on seven research areas located in Poland.
Trajectories in nitrogen availability during forest secondary succession: illustrated by foliar δ15N
BackgroundForest succession is an important ecological process and has been studied for more than a century. However, changes in nitrogen (N) availability during succession remain unclear as they may lead to either N saturation or N limitation. Here, we propose a conceptual model to illustrate changes in N availability during four stages of secondary succession using the natural abundance of 15N in plant leaves (foliar δ15N). We predicted that N availability would decline in the early stages of succession and then increase in late stages, coinciding with the changes in foliar δ15N, with the inflection point varying in different climate zones. Data on foliar δ15N from 16 succession sequences were synthesized to explore changes in N availability during forest succession.ResultsThe compiled data were consistent with the proposed conceptual model. Foliar δ15N in boreal and temperate forests decreased significantly in the first two stages of succession (estimated to last at least 66 years in temperate forests), at a rate of 0.18‰ and 0.38‰ per decade, respectively, and decreased slightly in tropical forests in the first 23 years. Foliar δ15N is projected to increase in later stages in all forests, which is supported by observations in both temperate and tropical forests. The inflection points of N availability when N limitation peaked during succession were different in different climate zones, implying different ecosystem N turnovers.ConclusionsOur study reconciles the controversies regarding changes in N availability during forest secondary succession. Our findings are also useful for predicting the recovery of N and carbon accumulation during succession. Nonetheless, studies on forest secondary succession using foliar δ15N have thus far been limited, and more research should be conducted to further verify the conceptual model proposed here.
Niche Selection by Soil Bacterial Community of Disturbed Subalpine Forests in Western Sichuan
Soil bacterial microbial communities are important in the ecosystem function and succession of forests. Using high-throughput 16S rRNA gene sequencing and relative importance for linear regression, we explored how the structures of soil bacterial community were influenced by the environmental factors and restoration succession of secondary forests in the Miyaluo Mountains of western Sichuan, China. Using a space-for-time approach, field measurements and sampling were conducted in four stands at different stages of natural restoration. Results of distance-based multivariate analysis showed that soil pH, organic carbon, available phosphorus, and C/N ratio were the predominant environmental factors that collectively explained a 46.9% variation in the bacterial community structures. The community compositions were jointly controlled by the direct and indirect effects of the rehabilitation stages. The changes in soil environmental factors coincided with restoration succession could lead to the shifts in the relative abundance of different soil bacterial taxa. We screened 13 successional discriminant taxa that could quantitatively indicate the secondary succession subalpine stage. Collectively, our findings show that soil bacteria in different taxa are governed by different local soil variables and rehabilitation ages, which can lead to shifts in the relative abundance of different taxa in successional stages, ultimately changing the entire soil bacterial community with the succession of secondary forest.
The Efficacy Analysis of Determining the Wooded and Shrubbed Area Based on Archival Aerial Imagery Using Texture Analysis
Open areas, along with their non-forest vegetation, are often threatened by secondary succession, which causes deterioration of biodiversity and the habitat’s conservation status. The knowledge about characteristics and dynamics of the secondary succession process is very important in the context of management and proper planning of active protection of the Natura 2000 habitats. This paper presents research on the evaluation of the possibility of using selected methods of textural analysis to determine the spatial extent of trees and shrubs based on archival aerial photographs, and consequently on the investigation of the secondary succession process. The research was carried out on imagery from six different dates, from 1971 to 2015. The images differed from each other in spectral resolution (panchromatic, in natural colors, color infrared), in original spatial resolution, as well as in radiometric quality. Two methods of textural analysis were chosen for the analysis: Gray level co-occurrence matrix (GLCM) and granulometric analysis, in a number of variants, depending on the selected parameters of these transformations. The choice of methods has been challenged by their reliability and ease of implementation in practice. The accuracy assessment was carried out using the results of visual photo interpretation of orthophotomaps from particular years as reference data. As a result of the conducted analyses, significant efficacy of the analyzed methods has been proved, with granulometric analysis as the method of generally better suitability and greater stability. The obtained results show the impact of individual image features on the classification efficiency. They also show greater stability and reliability of texture analysis based on granulometric/morphological operations.
Functional recovery of secondary tropical forests
One-third of all Neotropical forests are secondary forests that regrow naturally after agricultural use through secondary succession. We need to understand better how and why succession varies across environmental gradients and broad geographic scales. Here, we analyze functional recovery using community data on seven plant characteristics (traits) of 1,016 forest plots from 30 chronosequence sites across the Neotropics. By analyzing communities in terms of their traits, we enhance understanding of the mechanisms of succession, assess ecosystem recovery, and use these insights to propose successful forest restoration strategies. Wet and dry forests diverged markedly for several traits that increase growth rate in wet forests but come at the expense of reduced drought tolerance, delay, or avoidance, which is important in seasonally dry forests. Dry and wet forests showed different successional pathways for several traits. In dry forests, species turnover is driven by drought tolerance traits that are important early in succession and in wet forests by shade tolerance traits that are important later in succession. In both forests, deciduous and compound-leaved trees decreased with forest age, probably because microclimatic conditions became less hot and dry. Our results suggest that climatic water availability drives functional recovery by influencing the start and trajectory of succession, resulting in a convergence of community trait values with forest age when vegetation cover builds up. Within plots, the range in functional trait values increased with age. Based on the observed successional trait changes, we indicate the consequences for carbon and nutrient cycling and propose an ecologically sound strategy to improve forest restoration success.
Changes in nitrogen and phosphorus limitation during secondary succession in a karst region in southwest China
Background and aims Nitrogen (N) and/or phosphorus (P) limitation to primary productivity and other biological processes can change in a variety of ways as ecosystems develop. How N limitation and P limitation change from the early to the late stages of a secondary succession following farmland abandonment remains unclear in karst ecosystems in southwest China. Methods We used community foliar N:P ratio, soil alkaline phosphatase activity (APA) and other indicators of nutrient status (soil organic carbon [SOC], total soil N [TN], and total soil P [TP], Alkali-hydrolyzable N [AN], and available soil phosphorus [AP] concentrations) to examine changes in N and P status during secondary vegetation succession. Four types of plant communities (grasslands, shrublands, secondary forest, and primary forest) represented the early, middle, late, and very late successional stages, respectively. Results Community foliar N:P ratio, APA, and APA per unit SOC increased as succession proceeded from the grassland to the secondary and primary forest communities. Moreover, community foliar N:P ratios in the grassland were positively correlated with soil TN, while community foliar N:P ratios in the secondary forest and primary forest were negatively correlated with soil TP, but were not correlated with soil TN. Community foliar N:P ratios in the shrubland were not correlated with either soil TN or TP. Conclusions Our results suggest that the grassland in the karst region of southwest China is N limited, that the secondary and primary forests are P limited, and that the shrubland is constrained by N and P together or by other nutrients.
Maintenance of constant functional diversity during secondary succession of a subtropical forest in China
QUESTIONS: Does the importance of biotic interactions between tree species increase during secondary forest succession? Do functional trait values become increasingly divergent from early towards late successional stages and how is functional diversity affected by trait identity, species identity and species richness effects? LOCATION: Gutianshan National Nature Reserve, Zhejiang Province, southeast China. METHODS: Based on 26 leaf and wood traits for 120 woody species, we calculated functional diversity, using Rao's formula for quadratic entropy, trait dissimilarity, defined as half the mean trait‐based distance of all species in the community, and functional evenness, defined as the degree to which functional diversity is maximized. We employed randomization techniques to disentangle the effects of trait identity, species identity and species richness on these three components of functional diversity. RESULTS: Against expectations, functional diversity did not show any successional trend because the communities compensated for a loss in trait dissimilarity by distributing the trait values more evenly among the resident species, thus increasing functional evenness. Randomization tests showed that functional diversity was not affected by trait identity, by species identity or by species richness, which indicates that functional diversity was neither determined by particular single traits or by single species with outstanding trait values. CONCLUSIONS: The constant functional diversity suggests constant functionality in this subtropical forest, which might temporally maintain stable immigration conditions during the course of succession, and thus provides an explanation why these subtropical forests become more species‐rich with time.
Relationships between fungal community composition in decomposing leaf litter and home-field advantage effects
Increasing evidence suggests that specific interactions between microbial decomposers and plant litter, named home‐field advantage (HFA), influence litter breakdown. However, we still have limited understanding of whether HFA relates to specific microbiota, and whether specialized microbes originate from the soil or from the leaf microbiome. Here, we disentangle the roles of soil origin, litter types and the microbial community already present on the leaf litter in determining fungal community composition on decomposing leaf litter and HFA. We collected litters and associated soil samples from a secondary succession gradient ranging from herbaceous vegetation on recently abandoned ex‐arable fields to forest representing the end stage of succession. In a greenhouse, sterilized and unsterilized leaf litters were decomposed for 12 months in soils from early‐ to late‐successional stages according to a full‐factorial design. At the end, we examined fungal community composition on the decomposing litter. Fungal communities on decomposed late‐successional litter in late‐successional soil differed from those in early‐ and mid‐successional stage litter and soil combinations. Soil source had the strongest impact on litter fungal composition when using sterilized litter, while the impact of litter type was strongest when using unsterilized litter. Overall, we observed HFA, as litter decomposition was accelerated in home soils. Increasing HFA did not relate to the dissimilarity in overall fungal composition, but there was increasing dissimilarity in the relative abundance of the most dominant fungal taxon between decomposing litter in home and away soils. We conclude that early‐, mid‐ and late‐succession litter types did not exert strong selection effects on colonization by micro‐organisms from the soil species pool. Instead, fungal community composition on decomposing litter differed substantially between litter types for unsterilized litter, suggesting that the leaf microbiome, either directly or indirectly, is an important determinant of fungal community composition on decomposing leaves. HFA related most strongly to the abundance of the most dominant fungal taxa on the decomposing litter, suggesting that HFA may be attributed to some specific dominant fungi rather than to responses of the whole fungal community. A plain language summary is available for this article. Plain Language Summary