Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
155,027
result(s) for
"segmentations"
Sort by:
Deep semantic segmentation of natural and medical images: a review
2021
The semantic image segmentation task consists of classifying each pixel of an image into an instance, where each instance corresponds to a class. This task is a part of the concept of scene understanding or better explaining the global context of an image. In the medical image analysis domain, image segmentation can be used for image-guided interventions, radiotherapy, or improved radiological diagnostics. In this review, we categorize the leading deep learning-based medical and non-medical image segmentation solutions into six main groups of deep architectural, data synthesis-based, loss function-based, sequenced models, weakly supervised, and multi-task methods and provide a comprehensive review of the contributions in each of these groups. Further, for each group, we analyze each variant of these groups and discuss the limitations of the current approaches and present potential future research directions for semantic image segmentation.
Journal Article
EfficientPS: Efficient Panoptic Segmentation
2021
Understanding the scene in which an autonomous robot operates is critical for its competent functioning. Such scene comprehension necessitates recognizing instances of traffic participants along with general scene semantics which can be effectively addressed by the panoptic segmentation task. In this paper, we introduce the Efficient Panoptic Segmentation (EfficientPS) architecture that consists of a shared backbone which efficiently encodes and fuses semantically rich multi-scale features. We incorporate a new semantic head that aggregates fine and contextual features coherently and a new variant of Mask R-CNN as the instance head. We also propose a novel panoptic fusion module that congruously integrates the output logits from both the heads of our EfficientPS architecture to yield the final panoptic segmentation output. Additionally, we introduce the KITTI panoptic segmentation dataset that contains panoptic annotations for the popularly challenging KITTI benchmark. Extensive evaluations on Cityscapes, KITTI, Mapillary Vistas and Indian Driving Dataset demonstrate that our proposed architecture consistently sets the new state-of-the-art on all these four benchmarks while being the most efficient and fast panoptic segmentation architecture to date.
Journal Article
A survey on recent trends in deep learning for nucleus segmentation from histopathology images
by
Basu, Anusua
,
Senapati, Pradip
,
Rai, Rebika
in
Algorithms
,
Artificial Intelligence
,
Automation
2024
Nucleus segmentation is an imperative step in the qualitative study of imaging datasets, considered as an intricate task in histopathology image analysis. Segmenting a nucleus is an important part of diagnosing, staging, and grading cancer, but overlapping regions make it hard to separate and tell apart independent nuclei. Deep Learning is swiftly paving its way in the arena of nucleus segmentation, attracting quite a few researchers with its numerous published research articles indicating its efficacy in the field. This paper presents a systematic survey on nucleus segmentation using deep learning in the last five years (2017–2021), highlighting various segmentation models (U-Net, SCPP-Net, Sharp U-Net, and LiverNet) and exploring their similarities, strengths, datasets utilized, and unfolding research areas.
Journal Article
TMD-Unet: Triple-Unet with Multi-Scale Input Features and Dense Skip Connection for Medical Image Segmentation
2021
Deep learning is one of the most effective approaches to medical image processing applications. Network models are being studied more and more for medical image segmentation challenges. The encoder–decoder structure is achieving great success, in particular the Unet architecture, which is used as a baseline architecture for the medical image segmentation networks. Traditional Unet and Unet-based networks still have a limitation that is not able to fully exploit the output features of the convolutional units in the node. In this study, we proposed a new network model named TMD-Unet, which had three main enhancements in comparison with Unet: (1) modifying the interconnection of the network node, (2) using dilated convolution instead of the standard convolution, and (3) integrating the multi-scale input features on the input side of the model and applying a dense skip connection instead of a regular skip connection. Our experiments were performed on seven datasets, including many different medical image modalities such as colonoscopy, electron microscopy (EM), dermoscopy, computed tomography (CT), and magnetic resonance imaging (MRI). The segmentation applications implemented in the paper include EM, nuclei, polyp, skin lesion, left atrium, spleen, and liver segmentation. The dice score of our proposed models achieved 96.43% for liver segmentation, 95.51% for spleen segmentation, 92.65% for polyp segmentation, 94.11% for EM segmentation, 92.49% for nuclei segmentation, 91.81% for left atrium segmentation, and 87.27% for skin lesion segmentation. The experimental results showed that the proposed model was superior to the popular models for all seven applications, which demonstrates the high generality of the proposed model.
Journal Article
Instance segmentation of coarse aggregate images based on improved SOLOv2
2025
This article proposes an improved SOLOv2 instance segmentation algorithm, which solves the problems of missed detection, false detection, and poor segmentation accuracy of coarse aggregates under complex working conditions such as dryness, moisture, dispersion, adhesion, and stacking by introducing a cascaded channel spatial attention module before the mask branch. The experimental results show that the improved SOLOv2 model is more accurate in boundary segmentation of coarse aggregate instances under complex working conditions. Compared with the original SOLOv2, YOLACT, and Mask R-CNN models, the mAP has increased by 1.2%, 2.6%, and 2.0%, respectively.
Journal Article
Recent progress in semantic image segmentation
2019
Semantic image segmentation, which becomes one of the key applications in image processing and computer vision domain, has been used in multiple domains such as medical area and intelligent transportation. Lots of benchmark datasets are released for researchers to verify their algorithms. Semantic segmentation has been studied for many years. Since the emergence of Deep Neural Network (DNN), segmentation has made a tremendous progress. In this paper, we divide semantic image segmentation methods into two categories: traditional and recent DNN method. Firstly, we briefly summarize the traditional method as well as datasets released for segmentation, then we comprehensively investigate recent methods based on DNN which are described in the eight aspects: fully convolutional network, up-sample ways, FCN joint with CRF methods, dilated convolution approaches, progresses in backbone network, pyramid methods, Multi-level feature and multi-stage method, supervised, weakly-supervised and unsupervised methods. Finally, a conclusion in this area is drawn.
Journal Article
Towards a guideline for evaluation metrics in medical image segmentation
by
Kramer, Frank
,
Müller, Dominik
,
Soto-Rey, Iñaki
in
Accuracy
,
Algorithms
,
Artificial Intelligence
2022
In the last decade, research on artificial intelligence has seen rapid growth with deep learning models, especially in the field of medical image segmentation. Various studies demonstrated that these models have powerful prediction capabilities and achieved similar results as clinicians. However, recent studies revealed that the evaluation in image segmentation studies lacks reliable model performance assessment and showed statistical bias by incorrect metric implementation or usage. Thus, this work provides an overview and interpretation guide on the following metrics for medical image segmentation evaluation in binary as well as multi-class problems: Dice similarity coefficient, Jaccard, Sensitivity, Specificity, Rand index, ROC curves, Cohen’s Kappa, and Hausdorff distance. Furthermore, common issues like class imbalance and statistical as well as interpretation biases in evaluation are discussed. As a summary, we propose a guideline for standardized medical image segmentation evaluation to improve evaluation quality, reproducibility, and comparability in the research field.
Journal Article
Deep learning models and traditional automated techniques for brain tumor segmentation in MRI: a review
Brain is an amazing organ that controls all activities of a human. Any abnormality in the shape of anatomical regions of the brain needs to be detected as early as possible to reduce the mortality rate. It is also beneficial for treatment planning and therapy. The most crucial task is to isolate abnormal areas from normal tissue regions. To identify abnormalities in the earlier stage, various medical imaging modalities were used by medical practitioners as part of the diagnosis. Magnetic Resonance Imaging (MRI) is a non-invasive diagnostic tool used for analyzing the internal structures owing to its capability to provide images with high resolution and better contrast for soft tissues. This survey focuses on studies done in brain MRI. Manual segmentation of abnormal tissues is a time-consuming task, and the performance depends on the expert’s efficiency. Hence automating tumor segmentation plays a vital role in medical imaging applications. This study aims to provide a comprehensive survey on recent works developed in brain tumor segmentation. In this paper, a systematic literature review is presented to the reader to understand three policies, namely classical scheme, machine learning strategy, and deep learning methodology meant for tumor segmentation. Our primary goal is to include classical methods like atlas-based strategy and statistical-based models employed for segmenting tumors from brain MRI. Few studies that utilized machine learning approaches for the segmentation and classification of brain structures are also discussed. After that, the study provides an overview of deep learning-based segmentation models for quantitative analysis of brain MRI. Deep learning plays a vital role in the automatic segmentation of brain tissues. Presently deep learning technique outshines traditional statistical methods and machine learning approaches. An effort is made to enclose the literature on patch-based and semantic-based tissue segmentation presented by researchers working in the discipline of medical imaging. The manuscript discusses the basic convolutional neural network architecture, Data Sets, and the existing deep learning techniques for tissue segmentation coupled with classification. This paper also attempts to summarize the current works in Convolutional Neural networks and Autoencoders that assist researchers in seeking future directions. Finally, this article is concluded with possible developments and open challenges in brain tumor segmentation.
Journal Article
A review of convolutional neural networks in computer vision
by
Parmar, Milan
,
Zhao, Xia
,
Wang, Limin
in
Artificial Intelligence
,
Artificial neural networks
,
Classification
2024
In computer vision, a series of exemplary advances have been made in several areas involving image classification, semantic segmentation, object detection, and image super-resolution reconstruction with the rapid development of deep convolutional neural network (CNN). The CNN has superior features for autonomous learning and expression, and feature extraction from original input data can be realized by means of training CNN models that match practical applications. Due to the rapid progress in deep learning technology, the structure of CNN is becoming more and more complex and diverse. Consequently, it gradually replaces the traditional machine learning methods. This paper presents an elementary understanding of CNN components and their functions, including input layers, convolution layers, pooling layers, activation functions, batch normalization, dropout, fully connected layers, and output layers. On this basis, this paper gives a comprehensive overview of the past and current research status of the applications of CNN models in computer vision fields, e.g., image classification, object detection, and video prediction. In addition, we summarize the challenges and solutions of the deep CNN, and future research directions are also discussed.
Journal Article
Semantic Understanding of Scenes Through the ADE20K Dataset
2019
Semantic understanding of visual scenes is one of the holy grails of computer vision. Despite efforts of the community in data collection, there are still few image datasets covering a wide range of scenes and object categories with pixel-wise annotations for scene understanding. In this work, we present a densely annotated dataset ADE20K, which spans diverse annotations of scenes, objects, parts of objects, and in some cases even parts of parts. Totally there are 25k images of the complex everyday scenes containing a variety of objects in their natural spatial context. On average there are 19.5 instances and 10.5 object classes per image. Based on ADE20K, we construct benchmarks for scene parsing and instance segmentation. We provide baseline performances on both of the benchmarks and re-implement state-of-the-art models for open source. We further evaluate the effect of synchronized batch normalization and find that a reasonably large batch size is crucial for the semantic segmentation performance. We show that the networks trained on ADE20K are able to segment a wide variety of scenes and objects.
Journal Article