Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
239
result(s) for
"seminal fluid proteins"
Sort by:
Effects of Larval Diet on the Male Reproductive Traits in the West Indian Sweet Potato Weevils Euscepes postfasciatus (Coleoptera: Curculionidae)
by
Ikegawa, Yusuke
,
Himuro, Chihiro
,
Ohishi, Tsuyoshi
in
Accessory gland
,
Adults
,
Animal reproduction
2022
Larval diet significantly affects adult traits, although less is known about how they affect reproductive traits. Males of West Indian sweet potato weevil Euscepes postfasciatus deliver a remating inhibitor along with sperm to their mates during mating, leading to a refractory period (the period before females mate again). Crossing experiments were conducted using lines reared on artificial diets, including sweet potato powder (AD) or sweet potato tubers (SP) during the larval stage, and the refractory period was examined. We also examined whether the larval diet qualitatively or quantitatively altered male ejaculate. The results showed that the refractory period was significantly longer in the SP treatment than in the AD treatment for males and females. There was no significant difference in ejaculate volume. However, the number of sperm in the testes-seminal vesicles complex was significantly higher in the SP treatment. Additionally, SDS-PAGE revealed that the ejaculate was qualitatively different depending on the larval diet, and one protein of approximately 15 kDa in size was expressed only in the SP treatments. Revealing how larval diet affects reproductive traits in adult males will help shed light on the diverse evolution of insect mating systems and reproductive behavior.
Journal Article
Sexual conflict drives male manipulation of female postmating responses in Drosophila melanogaster
by
Keller, Laurent
,
Wensing, Kristina U.
,
Koppik, Mareike
in
Animals
,
Biological Evolution
,
Biological Sciences
2019
In many animals, females respond to mating with changes in physiology and behavior that are triggered by molecules transferred by males during mating. In Drosophila melanogaster, proteins in the seminal fluid are responsible for important female postmating responses, including temporal changes in egg production, elevated feeding rates and activity levels, reduced sexual receptivity, and activation of the immune system. It is unclear to what extent these changes are mutually beneficial to females and males or instead represent male manipulation. Here we use an experimental evolution approach in which females are randomly paired with a single male each generation, eliminating any opportunity for competition for mates or mate choice and thereby aligning the evolutionary interests of the sexes. After >150 generations of evolution, males from monogamous populations elicited a weaker postmating stimulation of egg production and activity than males from control populations that evolved with a polygamous mating system. Males from monogamous populations did not differ from males from polygamous populations in their ability to induce refractoriness to remating in females, but they were inferior to polygamous males in sperm competition. Mating-responsive genes in both the female abdomen and head showed a dampened response to mating with males from monogamous populations. Males from monogamous populations also exhibited lower expression of genes encoding seminal fluid proteins, which mediate the female response to mating. Together, these results demonstrate that the female postmating response, and the male molecules involved in eliciting this response, are shaped by ongoing sexual conflict.
Journal Article
The Drosophila seminal proteome and its role in postcopulatory sexual selection
by
Sitnik, Jessica L.
,
Sepil, Irem
,
Brown, Nora C.
in
Animals
,
Copulation
,
Drosophila melanogaster - physiology
2020
Postcopulatory sexual selection (PCSS), comprised of sperm competition and cryptic female choice, has emerged as a widespread evolutionary force among polyandrous animals. There is abundant evidence that PCSS can shape the evolution of sperm. However, sperm are not the whole story: they are accompanied by seminal fluid substances that play many roles, including influencing PCSS. Foremost among seminal fluid models is
Drosophila melanogaster
, which displays ubiquitous polyandry, and exhibits intraspecific variation in a number of seminal fluid proteins (Sfps) that appear to modulate paternity share. Here, we first consolidate current information on the identities of
D. melanogaster
Sfps. Comparing between
D. melanogaster
and human seminal proteomes, we find evidence of similarities between many protein classes and individual proteins, including some
D. melanogaster
Sfp genes linked to PCSS, suggesting evolutionary conservation of broad-scale functions. We then review experimental evidence for the functions of
D. melanogaster
Sfps in PCSS and sexual conflict. We identify gaps in our current knowledge and areas for future research, including an enhanced identification of PCSS-related Sfps, their interactions with rival sperm and with females, the role of qualitative changes in Sfps and mechanisms of ejaculate tailoring.
This article is part of the theme issue ‘Fifty years of sperm competition’.
Journal Article
Nonadaptive molecular evolution of seminal fluid proteins in Drosophila
by
Patlar, Bahar
,
Jayaswal, Vivek
,
Ranz, José M.
in
BRIEF COMMUNICATION
,
Brief Communications
,
Constraints
2021
Seminal fluid proteins (SFPs) are a group of reproductive proteins that are among the most evolutionarily divergent known. As SFPs can impact male and female fitness, these proteins have been proposed to evolve under postcopulatory sexual selection (PCSS). However, the fast change of the SFPs can also result from nonadaptive evolution, and the extent to which selective constraints prevent SFPs rapid evolution remains unknown. Using intra-and interspecific sequence information, along with genomics and functional data, we examine the molecular evolution of approximately 300 SFPs in Drosophila. We found that 50–57% of the SFP genes, depending on the population examined, are evolving under relaxed selection. Only 7–12% showed evidence of positive selection, with no evidence supporting other forms of PCSS, and 35–37% of the SFP genes were selectively constrained. Further, despite associations of positive selection with gene location on the X chromosome and protease activity, the analysis of additional genomic and functional features revealed their lack of influence on SFPs evolving under positive selection. Our results highlight a lack of sufficient evidence to claim that most SFPs are driven to evolve rapidly by PCSS while identifying genomic and functional attributes that influence different modes of SFPs evolution.
Journal Article
Seminal fluid proteins induce transcriptome changes in the Aedes aegypti female lower reproductive tract
by
Avila, Frank W.
,
Amaro, I. Alexandra
,
Harrington, Laura C.
in
Accessory gland
,
Aedes - genetics
,
Aedes aegypti
2021
Background
Mating induces behavioral and physiological changes in the arbovirus vector
Aedes aegypti
, including stimulation of egg development and oviposition, increased survival, and reluctance to re-mate with subsequent males. Transferred seminal fluid proteins and peptides derived from the male accessory glands induce these changes, though the mechanism by which they do this is not known.
Results
To determine transcriptome changes induced by seminal proteins, we injected extract from male accessory glands and seminal vesicles (MAG extract) into females and examined female lower reproductive tract (LRT) transcriptomes 24 h later, relative to non-injected controls. MAG extract induced 87 transcript-level changes, 31 of which were also seen in a previous study of the LRT 24 h after a natural mating, including 15 genes with transcript-level changes similarly observed in the spermathecae of mated females. The differentially-regulated genes are involved in diverse molecular processes, including immunity, proteolysis, neuronal function, transcription control, or contain predicted small-molecule binding and transport domains.
Conclusions
Our results reveal that seminal fluid proteins, specifically, can induce gene expression responses after mating and identify gene targets to further investigate for roles in post-mating responses and potential use in vector control.
Journal Article
Recovery from heat‐induced infertility—A study of reproductive tissue responses and fitness consequences in male Drosophila melanogaster
2022
The predicted temperature increase caused by climate change is a threat to biodiversity. Across animal taxa, male reproduction is often sensitive to elevated temperatures leading to fertility loss, and in more adverse scenarios, this can result in sterility when males reach their upper thermal fertility limit. Here, we investigate temperature‐induced changes in reproductive tissues, fertility reduction, sterility, and the associated fitness loss during the subsequent recovery phase in male Drosophila melanogaster. We heat‐stressed males during development and either allowed them to recover or not in early adulthood while measuring several determinants of male reproductive success. We found significant differences in recovery rate, organ sizes, sperm production, and other key reproductive traits among males from our different temperature treatments. Sperm maturation was impaired before reaching the upper thermal sterility threshold. While some effects were reversible, this did not compensate for the fitness loss due to damage imposed during development. Surprisingly, developmental heat stress was damaging to accessory gland growth, and female post‐mating responses mediated by seminal fluid proteins were impaired regardless of the possibility of recovery. We suggest that sub‐lethal thermal sterility and the subsequent fertility reduction are caused by a combination of inefficient functionality of both the accessory gland and testes. We investigate the consequences of heat stress and the mechanisms of heat‐induced fertility loss and sterility in Drosophila.
Journal Article
Chemical Cues that Guide Female Reproduction in Drosophila melanogaster
by
Billeter, Jean-Christophe
,
Wolfner, Mariana F
in
Animal reproduction
,
Biochemistry
,
Biological evolution
2018
Chemicals released into the environment by food, predators and conspecifics play critical roles in Drosophila reproduction. Females and males live in an environment full of smells, whose molecules communicate to them the availability of food, potential mates, competitors or predators. Volatile chemicals derived from fruit, yeast growing on the fruit, and flies already present on the fruit attract Drosophila, concentrating flies at food sites, where they will also mate. Species-specific cuticular hydrocarbons displayed on female Drosophila as they mature are sensed by males and act as pheromones to stimulate mating by conspecific males and inhibit heterospecific mating. The pheromonal profile of a female is also responsive to her nutritional environment, providing an honest signal of her fertility potential. After mating, cuticular and semen hydrocarbons transferred by the male change the female’s chemical profile. These molecules make the female less attractive to other males, thus protecting her mate’s sperm investment. Females have evolved the capacity to counteract this inhibition by ejecting the semen hydrocarbon (along with the rest of the remaining ejaculate) a few hours after mating. Although this ejection can temporarily restore the female’s attractiveness, shortly thereafter another male pheromone, a seminal peptide, decreases the female’s propensity to re-mate, thus continuing to protect the male’s investment. Females use olfaction and taste sensing to select optimal egg-laying sites, integrating cues for the availability of food for her offspring, and the presence of other flies and of harmful species. We argue that taking into account evolutionary considerations such as sexual conflict, and the ecological conditions in which flies live, is helpful in understanding the role of highly species-specific pheromones and blends thereof, as well as an individual’s response to the chemical cues in its environment.
Journal Article
DIFFERENTIAL INTROGRESSION IN A MOSAIC HYBRID ZONE REVEALS CANDIDATE BARRIER GENES
by
Andrés, Jose A.
,
Larson, Erica L.
,
Bogdanowicz, Steven M.
in
Alleles
,
Animals
,
Barriers to gene exchange
2013
Hybrid zones act as genomic sieves. Although globally advantageous alleles will spread throughout the zone and neutral alleles can be freely exchanged between species, introgression will be restricted for genes that contribute to reproductive barriers or local adaptation. Seminal fluid proteins (SFPs) are known to contribute to reproductive barriers in insects and have been proposed as candidate barrier genes in the hybridizing field crickets Gryllus pennsylvanicus and Gryllus firmus. Here, we have used 125 single nucleotide polymorphisms to characterize patterns of differential introgression and to identify genes that may contribute to prezygotic barriers between these species. Using a transcriptome scan of the male cricket accessory gland (the site of SFP synthesis), we identified genes with major allele frequency differences between the species. We then compared patterns of introgression for genes encoding SFPs with patterns for genes expressed in the same tissue that do not encode SFPs. We find no evidence that SFPs have reduced gene exchange across the cricket hybrid zone. However, a number of genes exhibit dramatically reduced introgression, and many of these genes encode proteins with functional roles consistent with known barriers.
Journal Article
Elucidation of ejaculatory bulb proteins in Bemisiatabaci Asia-1 and Asia II-1 and confirmation of their mating transfer via RNAi
by
Subramanian, Sabtharishi
,
Gouda, M. N. Rudra
,
Prabha, Ratna
in
Animal Anatomy
,
Animal Biochemistry
,
Animal reproduction
2024
Background
Bemisia tabaci
, a significant agricultural pest in Asia, contains distinct genetic groups, Asia-1 and Asia II-1. Understanding its reproductive biology, particularly the role of ejaculatory bulb proteins (EBPs) in mating, is crucial. However, EBPs in
B. tabaci
were not well characterised until this study.
Methods and Results
The EBPs have been characterised in the Asia-1 and Asia II-1 genetic groups of the whitefly
B. tabaci
, prevalent in Asia. The transcriptomic analysis yielded over 40,000,000 and 30,000,000 annotated transcripts, respectively, from Asia II-1 and Asia-1. Differential gene expression revealed the presence of 270 upregulated and 198 downregulated genes, with significant differences between these two genetic groups. Orphan genes (1992 numbers) were identified in both genetic groups. We report, for the first time, full-length sequences of EBP genes from
B. tabaci.
The 10 EBPs each deduced in
B. tabaci
Asia-1 and Asia II-1 are structurally akin to chemosensory proteins having four conserved cysteine residues. Additionally, we did domain analysis, protein structure prediction, mapping of these EBPs in the chromosomes of
B. tabaci,
and phylogenetic analysis to track their evolutionary lineage. We have specifically demonstrated the transfer of EBPs from males to females during mating using qPCR and further validated the transfer of EBPs through RNAi. Specifically, we targeted the highly expressed EBPs (EBP-3, 7, and 8 in BtAsia1; EBP-8, 9, and 10 in BtAsia II-1) through feeding bioassays of dsRNAs. Tracking by qPCR revealed that the females, when mated with dsRNA-treated males, did not show expression of the specific EBP, suggesting that the silencing of these genes in males hinders the transfer of EBP to females during mating.
Conclusion
Our findings provide novel insights into the genomic contours of EBPs in
B. tabaci
and underscore the potential of RNAi-based strategies for pest management by disrupting the reproductive processes.
Journal Article
Structural complexity and molecular heterogeneity of a butterfly ejaculate reflect a complex history of selection
by
Goetz, Breanna J.
,
Wheat, Christopher W.
,
Plakke, Melissa S.
in
Animal reproduction
,
Animals
,
Biological Evolution
2017
Male ejaculates are often structurally complex, and this complexity is likely to influence key reproductive interactions between males and females. However, despite its potential evolutionary significance, the molecular underpinnings of ejaculate structural complexity have received little empirical attention. To address this knowledge gap, we sought to understand the biochemical and functional properties of the structurally complex ejaculates of Pieris rapae butterflies. Males in this species produce large ejaculates called spermatophores composed of an outer envelope, an inner matrix, and a bolus of sperm. Females are thought to benefit from the nutrition contained in the soluble inner matrix through increases in longevity and fecundity. However, the indigestible outer envelope of the spermatophore delays female remating, allowing males to monopolize paternity for longer. Here, we show that these two nonsperm-containing spermatophore regions, the inner matrix and the outer envelope, differ in their protein composition and functional properties. We also reveal how these divergent protein mixtures are separately stored in the male reproductive tract and sequentially transferred to the female reproductive tract during spermatophore assembly. Intriguingly, we discovered large quantities of female-derived proteases in both spermatophore regions shortly after mating, which may contribute to spermatophore digestion and hence, female control over remating rate. Finally, we report evidence of past selection on these spermatophore proteins and female proteases, indicating a complex evolutionary history. Our findings illustrate how structural complexity of ejaculates may allow functionally and/or spatially associated suites of proteins to respond rapidly to divergent selective pressures, such as sexual conflict or reproductive cooperation.
Journal Article