Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
61
result(s) for
"senomorphic"
Sort by:
The Senescence-Associated Secretory Phenotype (SASP) in the Challenging Future of Cancer Therapy and Age-Related Diseases
by
Soriani, Alessandra
,
Santoni, Angela
,
Cuollo, Lorenzo
in
age-related disease
,
cancer therapy
,
cell senescence
2020
Cellular senescence represents a robust tumor-protecting mechanism that halts the proliferation of stressed or premalignant cells. However, this state of stable proliferative arrest is accompanied by the Senescence-Associated Secretory Phenotype (SASP), which entails the copious secretion of proinflammatory signals in the tissue microenvironment and contributes to age-related conditions, including, paradoxically, cancer. Novel therapeutic strategies aim at eliminating senescent cells with the use of senolytics or abolishing the SASP without killing the senescent cell with the use of the so-called “senomorphics”. In addition, recent works demonstrate the possibility of modifying the composition of the secretome by genetic or pharmacological intervention. The purpose is not to renounce the potent immunostimulatory nature of SASP, but rather learning to modulate it for combating cancer and other age-related diseases. This review describes the main molecular mechanisms regulating the SASP and reports the evidence of the feasibility of abrogating or modulating the SASP, discussing the possible implications of both strategies.
Journal Article
Rutin is a potent senomorphic agent to target senescent cells and can improve chemotherapeutic efficacy
by
Sun, Rong
,
Campisi, Judith
,
Sun, Yu
in
60 APPLIED LIFE SCIENCES
,
age-related pathology
,
Aging
2024
Aging is a major risk factor for most chronic disorders, for which cellular senescence is one of the central hallmarks. Senescent cells develop the pro‐inflammatory senescence‐associated secretory phenotype (SASP), which significantly contributes to organismal aging and age‐related disorders. Development of senotherapeutics, an emerging class of therapeutic agents to target senescent cells, allows to effectively delay aging and alleviate chronic pathologies. Here we report preliminary outputs from screening of a natural medicinal agent (NMA) library for senotherapeutic candidates and validated several agents with prominent potential as senomorphics. Rutin, a phytochemical constituent found in a number of plants, showed remarkable capacity in targeting senescent cells by dampening expression of the full spectrum SASP. Further analysis indicated that rutin restrains the acute stress‐associated phenotype (ASAP) by specifically interfering with the interactions of ATM with HIF1α, a master regulator of cellular and systemic homeostasis activated during senescence, and of ATM with TRAF6, part of a key signaling axis supporting the ASAP development toward the SASP. Conditioned media produced by senescent stromal cells enhanced the malignant phenotypes of prostate cancer cells, including in vitro proliferation, migration, invasion, and more importantly, chemoresistance, while rutin remarkably downregulated these gain‐of‐functions. Although classic chemotherapy reduced tumor progression, the treatment outcome was substantially improved upon combination of a chemotherapeutic agent with rutin. Our study provides a proof of concept for rutin as an emerging natural senomorphic agent, and presents an effective therapeutic avenue for alleviating age‐related pathologies including cancer.
Senescent cells in solid organs are a major driving force of chronological aging and various age‐related pathologies. In the early stage of the SASP development (ASAP), ATM physically interacts with HIF1a and TRAF6. Rutin, a natural phytochemical agent, can impede the interaction between ATM and HIF1a or TRAF6. Through effectively suppressing the SASP development, rutin holds a substantial value to serve as a novel senomorphic agent in future clinics.
Journal Article
Mitigating Pro‐Inflammatory SASP and DAMP With Urolithin A: A Novel Senomorphic Strategy
2025
ABSTRACT
Senescent cells are known to contribute to aging and age‐related diseases. One key way they influence aging is by secreting senescence‐associated secretory phenotype (SASP) factors along with several damage‐associated molecular pattern (DAMP) molecules. Consequently, inhibiting SASP and DAMP signaling (senomorphics) has emerged as a therapeutic strategy. Urolithin A (UA), a gut‐derived metabolite produced from ellagitannins and ellagic acid found in berries, nuts, and pomegranates, has demonstrated potent anti‐inflammatory properties and protective effects against aging and age‐related conditions in experimental models. Here we demonstrate that UA lowers the expression and release of pro‐inflammatory SASP and DAMP factors, at least in part, by downregulating cytosolic DNA release and subsequent decrease in cGAS‐STING signaling.
Senescent cells accumulate extranuclear DNA fragments that are recognized by the cyclic GMP‐AMP synthase (cGAS) and its effector protein stimulator of interferon genes (STING), which promotes expression of SASP and DAMP genes by inducing nuclear factor‐kappa B (NF‐κB) and IFN regulatory factor 3 (IRF3) translocation. UA inhibits this process by preventing cytosolic DNA leakage and reducing cGAS‐STING signaling.
Journal Article
Cellular senescence and the tumour microenvironment
2022
The senescence‐associated secretory phenotype (SASP), where senescent cells produce a variety of secreted proteins including inflammatory cytokines, chemokines, matrix remodelling factors, growth factors and so on, plays pivotal but varying roles in the tumour microenvironment. The effects of SASP on the surrounding microenvironment depend on the cell type and process of cellular senescence induction, which is often associated with innate immunity. Via SASP‐mediated paracrine effects, senescent cells can remodel the surrounding tissues by modulating the character of adjacent cells, such as stromal, immune cells, as well as cancer cells. The SASP is associated with both tumour‐suppressive and tumour‐promoting effects, as observed in senescence surveillance effects (tumour‐suppressive) and suppression of anti‐tumour immunity in most senescent cancer‐associated fibroblasts and senescent T cells (tumour‐promoting). In this review, we discuss the features and roles of senescent cells in tumour microenvironment with emphasis on their context‐dependency that determines whether they promote or suppress cancer development. Potential usage of recently developed drugs that suppress the SASP (senomorphics) or selectively kill senescence cells (senolytics) in cancer therapy are also discussed.
The senescence‐associated secretory phenotype (SASP), where senescent cells produce a variety of secreted proteins, plays pivotal roles in the tumour microenvironment. SASP remodels the surrounding tissues by modulating the character of adjacent cells and can promote or suppress tumorigenesis. In this review, we discuss the features and roles of senescent cells in tumour microenvironment with focus on their context‐dependency.
Journal Article
Targeting therapy-induced senescence as a novel strategy to combat chemotherapy-induced peripheral neuropathy
2024
Chemotherapy-induced peripheral neuropathy (CIPN) is a treatment-limiting adverse effect of anticancer therapy that complicates the lifestyle of many cancer survivors. There is currently no gold-standard for the assessment or management of CIPN. Subsequently, understanding the underlying mechanisms that lead to the development of CIPN is essential for finding better pharmacological therapy. Therapy-induced senescence (TIS) is a form of senescence that is triggered in malignant and non-malignant cells in response to the exposure to chemotherapy. Recent evidence has also suggested that TIS develops in the dorsal root ganglia of rodent models of CIPN. Interestingly, several components of the senescent phenotype are commensurate with the currently established primary processes implicated in the pathogenesis of CIPN including mitochondrial dysfunction, oxidative stress, and neuroinflammation. In this article, we review the literature that supports the hypothesis that TIS could serve as a holistic mechanism leading to CIPN, and we propose the potential for investigating senotherapeutics as means to mitigate CIPN in cancer survivors.
Journal Article
Synergistic roles of CBX4 chromo and SIM domains in regulating senescence of primary human osteoarthritic chondrocytes
2023
Background
Cellular senescence is a critical factor contributing to osteoarthritis (OA). Overexpression of chromobox homolog 4 (CBX4) in a mouse system was demonstrated to alleviate post-traumatic osteoarthritis (PTOA) by reducing cellular senescence. Additionally, replicative cellular senescence of WI-38 fibroblasts can be attenuated by CBX4. However, the mechanisms underlying this senomorphic function of CBX4 are not fully understood. In this study, we aimed to investigate the role of CBX4 in cellular senescence in human primary osteoarthritic chondrocytes and to identify the functional domains of CBX4 necessary for its function in modulating senescence.
Methods
Chondrocytes, isolated from 6 individuals undergoing total knee replacement for OA, were transduced with wild-type CBX4, mutant CBX4, and control lentiviral constructs. Senescence-related phenotypic outcomes included the following: multiple flow cytometry-measured markers (p16
INK4A
, senescence-associated β-galactosidase [SA-β-gal] activity and dipeptidyl peptidase-4 [DPP4], and proliferation marker EdU), multiplex ELISA-measured markers in chondrocyte culture media (senescence-associated secretory phenotypes [SASPs], including IL-1β, IL-6, IL-8, TNF-α, MMP-1, MMP-3, and MMP-9), and PCR array-evaluated senescence-related genes.
Results
Compared with control, CBX4 overexpression in OA chondrocytes decreased DPP4 expression and SASP secretion and increased chondrocyte proliferation confirming CBX4 senomorphic effects on primary human chondrocytes. Point mutations of the chromodomain domain (CDM, involved in chromatin modification) alone were sufficient to partially block the senomorphic activity of CBX4 (p16
INK4A
and DPP4 increased, and EdU decreased) but had minimal effect on SASP secretion. Although having no effect on p16
INK4A
, DPP4, and EdU, deletion of two small-ubiquitin-like-modifier-interaction motifs (CBX4 ΔSIMs) led to increased SASP secretion (IL-1β, TNF-α, IL-8). The combination CBX4 CDMΔSIMs altered all these measures adversely and to a greater degree than the single domain mutants. Deletion of the C-terminal (CBX4 ΔC-box) involved with transcriptional silencing of polycomb group proteins increased IL-1β slightly but significantly but altered none of the other senescence outcome measures.
Conclusions
CBX4 has a senomorphic effect on human osteoarthritic chondrocytes. CDM is critical for CBX4-mediated regulation of senescence. The SIMs are supportive but not indispensable for CBX4 senomorphic function while the C-box is dispensable.
Journal Article
Exploring the Communication of the SASP: Dynamic, Interactive, and Adaptive Effects on the Microenvironment
2023
Cellular senescence is a complex cell state that can occur during physiological ageing or after exposure to stress signals, regardless of age. It is a dynamic process that continuously evolves in a context-dependent manner. Senescent cells interact with their microenvironment by producing a heterogenous and plastic secretome referred to as the senescence-associated secretory phenotype (SASP). Hence, understanding the cross-talk between SASP and the microenvironment can be challenging due to the complexity of signal exchanges. In this review, we first aim to update the definition of senescence and its associated biomarkers from its discovery to the present day. We detail the regulatory mechanisms involved in the expression of SASP at multiple levels and develop how SASP can orchestrate microenvironment modifications, by focusing on extracellular matrix modifications, neighboring cells’ fate, and intercellular communications. We present hypotheses on how these microenvironmental events may affect dynamic changes in SASP composition in return. Finally, we discuss the various existing approaches to targeting SASP and clarify what is currently known about the biological effects of these modified SASPs on the cellular environment.
Journal Article
Ruxolitinib-based senomorphic therapy mitigates cardiomyocyte senescence in septic cardiomyopathy by inhibiting the JAK2/STAT3 signaling pathway
by
Wang, Zhixiang
,
Zheng, Xinjie
,
Jin, Xian
in
Animals
,
Cardiomyopathies - drug therapy
,
Cardiomyopathies - metabolism
2024
Cellular senescence has emerged as a pivotal focus in cardiovascular research. This study investigates the previously unrecognized role of cellular senescence in septic cardiomyopathy (SCM) and evaluates senomorphic therapy using ruxolitinib (Rux) as a potential treatment option.
We employed lipopolysaccharide (LPS)-induced neonatal rat cardiomyocytes (NRCMs) and two mouse models-LPS-induced and cecal ligation and puncture (CLP)-induced SCM models-to assess Rux's effects. RNA sequencing, western blotting (WB), quantitative polymerase chain reaction (qPCR), immunofluorescence, immunohistochemistry, senescence-associated β-galactosidase (SA-β-gal) assay, and other techniques were utilized to investigate underlying mechanisms.
Senescence-associated secretory phenotype (SASP) and cellular senescence markers were markedly elevated in LPS-induced NRCMs and SCM animal models, confirmed by the SA-β-gal assay. Rux treatment attenuated SASP
and
, alongside downregulation of senescence markers. Moreover, Rux-based senomorphic therapy mitigated mitochondrial-mediated apoptosis, improved cardiac function in SCM mice, restored the balance of antioxidant system, and reduced reactive oxygen species (ROS) levels. Rux treatment restored mitochondrial membrane potential, mitigated mitochondrial morphological damage, and upregulated mitochondrial complex-related gene expression, thereby enhancing mitochondrial function. Additionally, Rux treatment ameliorated SCM-induced mitochondrial dynamic dysfunction and endoplasmic reticulum stress. Mechanistically, Rux inhibited JAK2-STAT3 signaling activation both
and
. Notably, low-dose Rux and ABT263 showed comparable efficacy in mitigating SCM.
This study highlighted the potential significance of cellular senescence in SCM pathogenesis and suggested Rux-based senomorphic therapy as a promising therapeutic approach for SCM.
Journal Article
Cellular Senescence in Lung Fibrosis
by
Sellarés, Jacobo
,
Hernandez-Gonzalez, Fernanda
,
Serrano, Manuel
in
Aging
,
Cell cycle
,
Chronic illnesses
2021
Fibrosing interstitial lung diseases (ILDs) are chronic and ultimately fatal age-related lung diseases characterized by the progressive and irreversible accumulation of scar tissue in the lung parenchyma. Over the past years, significant progress has been made in our incomplete understanding of the pathobiology underlying fibrosing ILDs, in particular in relation to diverse age-related processes and cell perturbations that seem to lead to maladaptation to stress and susceptibility to lung fibrosis. Growing evidence suggests that a specific biological phenomenon known as cellular senescence plays an important role in the initiation and progression of pulmonary fibrosis. Cellular senescence is defined as a cell fate decision caused by the accumulation of unrepairable cellular damage and is characterized by an abundant pro-inflammatory and pro-fibrotic secretome. The senescence response has been widely recognized as a beneficial physiological mechanism during development and in tumour suppression. However, recent evidence strengthens the idea that it also drives degenerative processes such as lung fibrosis, most likely by promoting molecular and cellular changes in chronic fibrosing processes. Here, we review how cellular senescence may contribute to lung fibrosis pathobiology, and we highlight current and emerging therapeutic approaches to treat fibrosing ILDs by targeting cellular senescence.
Journal Article
The Potential of Polyphenols in Modulating the Cellular Senescence Process: Implications and Mechanism of Action
2025
Background: Cellular senescence is a biological process with a dual role in organismal health. While transient senescence supports tissue repair and acts as a tumor-suppressive mechanism, the chronic accumulation of senescent cells contributes to aging and the progression of age-related diseases. Senotherapeutics, including senolytics, which selectively eliminate senescent cells, and senomorphics, which modulate the senescence-associated secretory phenotype (SASP), have emerged as promising strategies for managing age-related pathologies. Among these, polyphenols, a diverse group of plant-derived bioactive compounds, have gained attention for their potential to modulate cellular senescence. Methods: This review synthesizes evidence from in vitro, in vivo, and clinical studies on the senolytic and senomorphic activities of bioactive polyphenols, including resveratrol, kaempferol, apigenin, and fisetin. The analysis focuses on their molecular mechanisms of action and their impact on fundamental aging-related pathways. Results: Polyphenols exhibit therapeutic versatility by activating SIRT1, inhibiting NF-κB, and modulating autophagy. These compounds demonstrate a dual role, promoting the survival of healthy cells while inducing apoptosis in senescent cells. Preclinical evidence indicates their capacity to reduce SASP-associated inflammation, restore tissue homeostasis, and attenuate cellular senescence in various models of aging. Conclusions: Polyphenols represent a promising class of senotherapeutics for mitigating age-related diseases and promoting healthy lifespan extension. Further research should focus on clinical validation and the long-term effects of these compounds, paving the way for their development as therapeutic agents in geriatric medicine.
Journal Article