Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
35,996
result(s) for
"sensor applications"
Sort by:
Photocatalytic activity and antibacterial behavior of TiO2 coatings co-doped with copper and nitrogen via sol–gel method
by
Tahmasebizad, Nasim
,
Pazhuhanfar, Yaghoub
,
Shaban Ghazani, Mehdi
in
Absorption spectra
,
Bacteria
,
Catalytic activity
2020
The sol–gel process is used to prepare photocatalytic coatings with antibacterial properties. Also, doping with metallic or non-metallic elements has an impact on the antibacterial and photocatalytic activity of these coatings. Although there are many studies in this field, the effect of co-doping with Cu and N and their concentrations on the antibacterial properties of TiO
2
coatings against the
E. coli
and
S. aureus
bacteria has not been studied. In the present investigation, the sol–gel method was employed to deposit both undoped and Cu-N co-doped TiO
2
photocatalytic coatings on glass surface, which are expected to degrade bacterial and chemical contaminants in water while exposed to visible sunlight wavelengths. Before the coating process, an appropriate heat treatment was applied on the samples and the quality of coatings, band gap energy, and also photocatalytic and antibacterial properties were evaluated. Results showed that, in the presence of dopants, the band gap become narrower and the absorption spectrum is transferred from the ultraviolet to the visible light range. Also, it was demonstrated that, under the visible light radiation, all of the co-doped samples show higher photocatalytic activity than the undoped ones. Meanwhile, the antibacterial characteristics of TiO
2
coatings was enhanced by increasing the dopant concentration when exposing to sunlight.
Highlights
TiO
2
coatings co-doped with different concentrations of copper and nitrogen were applied on glass surface using sol–gel process.
The influence of the dopant concentration on the photocatalytic activity and antibacterial properties was discussed.
Under the visible light radiation, all of the co-doped samples have higher photocatalytic activities than the undoped ones, while the 0.75%Cu-N sample has the best photocatalytic activity, even better than the 1% Cu-N one.
Journal Article
Semiconductor Gas Sensors: Materials, Technology, Design, and Application
by
Milovanovic, Vladimir
,
Stamenkovic, Zoran
,
Vasiljevic, Zorka Z.
in
Air pollution
,
Carbon dioxide
,
Carbon monoxide
2020
This paper presents an overview of semiconductor materials used in gas sensors, their technology, design, and application. Semiconductor materials include metal oxides, conducting polymers, carbon nanotubes, and 2D materials. Metal oxides are most often the first choice due to their ease of fabrication, low cost, high sensitivity, and stability. Some of their disadvantages are low selectivity and high operating temperature. Conducting polymers have the advantage of a low operating temperature and can detect many organic vapors. They are flexible but affected by humidity. Carbon nanotubes are chemically and mechanically stable and are sensitive towards NO and NH3, but need dopants or modifications to sense other gases. Graphene, transition metal chalcogenides, boron nitride, transition metal carbides/nitrides, metal organic frameworks, and metal oxide nanosheets as 2D materials represent gas-sensing materials of the future, especially in medical devices, such as breath sensing. This overview covers the most used semiconducting materials in gas sensing, their synthesis methods and morphology, especially oxide nanostructures, heterostructures, and 2D materials, as well as sensor technology and design, application in advance electronic circuits and systems, and research challenges from the perspective of emerging technologies.
Journal Article
Distributed Sensor Systems
by
Alcaraz Calero, Jose M
,
Rashvand, Habib F
in
Communication, Networking and Broadcast Technologies
,
Components, Circuits, Devices and Systems
,
Design and construction
2012
This book focuses on the distinct but tightly inter-related areas of development for distributed sensing systems In this book, the authors discuss the technological developments lead by sensor technology, addressing viable new applications to inspire a technological evolution. Under the advanced and visionary approach of distributed intelligence, the authors focus on three distinct but tightly inter-related areas of developments for distributed sensing systems (DSS): firstly, the sensor technology embracing the conversion of the phenomena of interest into desirable form of signal such as electric, secondly, the interaction process between sensing points which requires immense intelligence loosely called networking, and finally, the adoption of useful maturing systems through potential applications for right impacts for a better life and a brighter economy. Furthermore, the book contains a number of case studies and typical applications illustrating the technical details, features and functions of the systems, as well as demonstrating their benefits and limitations. Key Features: Discusses the technological developments lead by sensor technology Addresses viable new applications Contains a number of case studies and typical applications illustrating the technical details, features and functions of the systems Demonstrates the benefits and limitations of distributed sensing Written by experts with vast experience in the field (both in academia and industry) This book will be an invaluable reference for postgraduates studying related courses (communication engineering, engineering management, computer systems, industrial process, automation, design, environmental, urban, surveillance), R&D engineers, system and application designers, researchers, industrial project managers and engineers, and technical and strategic managers planning new products
IR Sensors, Related Materials, and Applications
by
Alizadeh, Niyaz
,
Argirusis, Nikolaos
,
Argirusis, Christos
in
Atoms & subatomic particles
,
Carbon
,
Composite materials
2025
Infrared (IR) sensors are widely used in various applications due to their ability to detect infrared radiation. Currently, infrared detector technology is in its third generation and faces enormous challenges. IR radiation propagation is categorized into distinct transmission windows with the most intriguing aspects of thermal imaging being mid-wave infrared (MWIR) and long-wave infrared (LWIR). Infrared detectors for thermal imaging have many uses in industrial applications, security, search and rescue, surveillance, medical, research, meteorology, climatology, and astronomy. Presently, high-performance infrared imaging technology mostly relies on epitaxially grown structures of the small-bandgap bulk alloy mercury–cadmium–telluride (MCT), indium antimonide (InSb), and GaAs-based quantum well infrared photodetectors (QWIPs), contingent upon the application and wavelength range. Nanostructures and nanomaterials exhibiting appropriate electrical and mechanical properties including two-dimensional materials, graphene, quantum dots (QDs), quantum dot in well (DWELL), and colloidal quantum dot (CQD) will significantly enhance the electronic characteristics of infrared photodetectors, transition metal dichalcogenides, and metal oxides, which are garnering heightened interest. The present manuscript gives an overview of IR sensors, their types, materials commonly used in them, and examples of related applications. Finally, a summary of the manuscript and an outlook on prospects are given.
Journal Article
Laser-Induced Electrochemical Biosensor Modified with Graphene-Based Ink for Label-Free Detection of Alpha-Fetoprotein and 17β-Estradiol
2024
In this research, a novel electrochemical biosensor is proposed based on inducing graphene formation on polyimide substrate via laser engraving. Graphene polyaniline (G-PANI) conductive ink was synthesized by planetary mixing and applied to the working zone of the developed sensor to effectively enhance the electrical signals. The laser-induced graphene (LIG) sensor was used to detect alpha-fetoprotein (AFP) and 17β-Estradiol (E2) in the phosphate buffer saline (PBS) buffer and human serum. The electrochemical performance of the biosensor in determining these biomarkers was investigated by differential pulse voltammetry (DPV) and chronoamperometry (CA). In a buffer environment, alpha-fetoprotein (AFP) and 17β-Estradiol detection range were 4–400 ng/mL and 20–400 pg/mL respectively. The experimental results showed a limit of detection (LOD) of 1.15 ng/mL and 0.96 pg/mL for AFP and estrogen, respectively, with an excellent linear range (R2 = 0.98 and 0.99). In addition, the designed sensor was able to detect these two types of biomarkers in human serum successfully. The proposed sensor exhibited excellent reproducibility, repeatability, and good stability (relative standard deviation, RSD = 0.96%, 1.12%, 2.92%, respectively). The electrochemical biosensor proposed herein is easy to prepare and can be successfully used for low-cost, rapid detection of AFP and E2. This approach provides a promising platform for clinical detection and is advantageous to healthcare applications.
Journal Article
Sensing Classroom Temperature, Relative Humidity, Illuminance, CO2, and Noise: An Integral Solution Based on an IoT Device for Dense Deployments
2024
Maintaining optimal Indoor Environmental Quality (IEQ) requires continuous measurement of certain variables. To this end, ASHRAE and BPIE recommend that at least the following areas of interest be considered when measuring IEQ: thermal comfort, illuminance, indoor air quality, and noise. At this time, it is not common to find an IoT device that is suitable for dense deployments in schools, university campuses, hospitals, and office buildings, among others, that measures variables in all of the above areas of interest. This paper presents a solution to the problem previously outlined by proposing an IoT device that measures variables across all of the aforementioned areas of interest. Moreover, in a radio frequency network with a tree-like structure of IoT devices, this device is able to assume the roles of sensor and hub node, sensor and router node, and only sensor node. The experimental results are satisfactory, and the detailed system design ensures the replicability of the device. Furthermore, the theoretical analysis paves the way for high scalability.
Journal Article
Radar Recorded Child Vital Sign Public Dataset and Deep Learning-Based Age Group Classification Framework for Vehicular Application
2021
The ongoing intense development of short-range radar systems and their improved capability of measuring small movements make these systems reliable solutions for the extraction of human vital signs in a contactless fashion. The continuous contactless monitoring of vital signs can be considered in a wide range of applications, such as remote healthcare solutions and context-aware smart sensor development. Currently, the provision of radar-recorded datasets of human vital signs is still an open issue. In this paper, we present a new frequency-modulated continuous wave (FMCW) radar-recorded vital sign dataset for 50 children aged less than 13 years. A clinically approved vital sign monitoring sensor was also deployed as a reference, and data from both sensors were time-synchronized. With the presented dataset, a new child age-group classification system based on GoogLeNet is proposed to develop a child safety sensor for smart vehicles. The radar-recorded vital signs of children are divided into several age groups, and the GoogLeNet framework is trained to predict the age of unknown human test subjects.
Journal Article
Smart Sensors Applications for a New Paradigm of a Production Line
by
Indri, Marina
,
Lazzero, Ivan
,
Trapani, Stefano
in
Industry 4.0
,
production line
,
smart sensor applications
2019
Industrial plants are going to face a deep renewing process within the Industry 4.0 scenario. New paradigms of production lines are foreseen in the very near future, characterized by a strict collaboration between humans and robots and by a high degree of flexibility. Such envisaged improvements will require the smart use of proper sensors at very different levels. This paper investigates three different aspects of this industrial renewing process, based on three different ways of exploiting sensors, toward a new paradigm of a production line. The provided contributions, offering various types of innovation and integration, are relative to: (i) a virtual sensor approach for manual guidance, increasing the potentialities of a standard industrial manipulator, (ii) a smart manufacturing solution to assist the operator’s activity in manual assembly stations, through an original exploitation of multiple sensors, and (iii) the development of an advanced robotic architecture for a flexible production line, in which a team of autonomous mobile robots acts as a meta-sensor net supporting traditional automated guided vehicles. Accurate analyses of existing state-of-the-art solutions compared with the proposed ones are offered for the considered issues.
Journal Article
Dielectric Elastomer Sensors with Advanced Designs and Their Applications
2023
Dielectric elastomer sensors (DESs) have been known as highly stretchable strain sensors for about two decades. They are composite films consisting of alternating dielectric and electrode layers. Their electrical capacitance between the electrodes is enhanced upon stretching. In this paper, a variety of advanced designs of DESs is introduced. An explanation of how these sensors work and how they perform in terms of capacitance versus deformation or load force is provided. Moreover, the paper describes how the sensor design affects the sensor characteristics in order to achieve a high measuring sensitivity. The most relevant quantities to be measured are distance variations or elongations, forces and pressure loads. It is demonstrated that the sensor design can be supported by Finite Element Method (FEM) simulations. In the second part of the paper, possible applications of the advanced DESs are outlined. Pure sensor applications to detect or monitor pressure or deformation are distinguished from other applications, where sensors form a part of a human–machine interface (HMI). DESs are predestined to be used in contact with the human body due to their softness and flexibility. In the case of an HMI, a dosed load on a sensor by the user’s hand enables the remote control of arbitrary technical functions. This can preferably be realized with an operating glove, which exhibits different categories of DESs. Possible applications of DESs are described with the support of functional demonstrators.
Journal Article
Biosensing Applications of Molecularly Imprinted-Polymer-Based Nanomaterials
by
Kılıç, Seçkin
,
Denizli, Adil
,
Saylan, Yeşeren
in
Automation
,
Biosensors
,
Dielectric properties
2024
In the realm of sensing technologies, the appeal of sensors lies in their exceptional detection ability, high selectivity, sensitivity, cost-effectiveness, and minimal sample usage. Notably, molecularly imprinted polymer (MIP)-based sensors have emerged as focal points of interest spanning from clinical to environmental applications. These sensors offer a promising avenue for rapid, selective, reusable, and real-time screening of diverse molecules. The preparation technologies employed in crafting various polymer formats, ranging from microparticles to nanomaterials, wield a profound influence. These techniques significantly impact the assembly of simplified sensing systems, showcasing remarkable compatibility with other technologies. Moreover, they are poised to play a pivotal role in the realization of next-generation platforms, streamlining the fabrication of sensing systems tailored for diverse objectives. This review serves as a comprehensive exploration, offering concise insights into sensors, the molecular imprinting method, and the burgeoning domain of MIP-based sensors along with their applications. Delving into recent progress, this review provides a detailed summary of advances in imprinted-particle- and gel-based sensors, illuminating the creation of novel sensing systems. Additionally, a thorough examination of the distinctive properties of various types of MIP-based sensors across different applications enriches the understanding of their versatility. In the concluding sections, this review highlights the most recent experiments from cutting-edge studies on MIP-based sensors targeting various molecules. By encapsulating the current state of research, this review acts as a valuable resource, offering a snapshot of the dynamic landscape of MIP-based sensor development and its potential impact on diverse scientific and technological domains.
Journal Article