Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Reading LevelReading Level
-
Content TypeContent Type
-
YearFrom:-To:
-
More FiltersMore FiltersItem TypeIs Full-Text AvailableSubjectPublisherSourceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
90,065
result(s) for
"sensor network"
Sort by:
Energy-Efficient Clustering and Routing Using ASFO and a Cross-Layer-Based Expedient Routing Protocol for Wireless Sensor Networks
by
Shanmugam, Ramalingam
,
Thangarajan, Thamaraimanalan
,
Cherappa, Venkatesan
in
adaptive sailfish optimization
,
Algorithms
,
Clustering
2023
Today’s critical goals in sensor network research are extending the lifetime of wireless sensor networks (WSNs) and lowering power consumption. A WSN necessitates the use of energy-efficient communication networks. Clustering, storage, communication capacity, high configuration complexity, low communication speed, and limited computation are also some of the energy limitations of WSNs. Moreover, cluster head selection remains problematic for WSN energy minimization. Sensor nodes (SNs) are clustered in this work using the Adaptive Sailfish Optimization (ASFO) algorithm with K-medoids. The primary purpose of research is to optimize the selection of cluster heads through energy stabilization, distance reduction, and latency minimization between nodes. Because of these constraints, achieving optimal energy resource utilization is an essential problem in WSNs. An energy-efficient cross-layer-based expedient routing protocol (E-CERP) is used to determine the shortest route, dynamically minimizing network overhead. The proposed method is used to evaluate the packet delivery ratio (PDR), packet delay, throughput, power consumption, network lifetime, packet loss rate, and error estimation, and the results were superior to existing methods. PDR (100%), packet delay (0.05 s), throughput (0.99 Mbps), power consumption (1.97 mJ), network lifespan (5908 rounds), and PLR (0.5%) for 100 nodes are the performance results for quality-of-service parameters.
Journal Article
Localization in Wireless Sensor Networks: A Survey on Algorithms, Measurement Techniques, Applications and Challenges
2017
Localization is an important aspect in the field of wireless sensor networks (WSNs) that has developed significant research interest among academia and research community. Wireless sensor network is formed by a large number of tiny, low energy, limited processing capability and low-cost sensors that communicate with each other in ad-hoc fashion. The task of determining physical coordinates of sensor nodes in WSNs is known as localization or positioning and is a key factor in today’s communication systems to estimate the place of origin of events. As the requirement of the positioning accuracy for different applications varies, different localization methods are used in different applications and there are several challenges in some special scenarios such as forest fire detection. In this paper, we survey different measurement techniques and strategies for range based and range free localization with an emphasis on the latter. Further, we discuss different localization-based applications, where the estimation of the location information is crucial. Finally, a comprehensive discussion of the challenges such as accuracy, cost, complexity, and scalability are given.
Journal Article
An Efficient Metaheuristic-Based Clustering with Routing Protocol for Underwater Wireless Sensor Networks
by
Mohan, Prakash
,
Alotaibi, Youseef
,
Subramani, Neelakandan
in
Acoustics
,
Algorithms
,
Bandwidths
2022
In recent years, the underwater wireless sensor network (UWSN) has received a significant interest among research communities for several applications, such as disaster management, water quality prediction, environmental observance, underwater navigation, etc. The UWSN comprises a massive number of sensors placed in rivers and oceans for observing the underwater environment. However, the underwater sensors are restricted to energy and it is tedious to recharge/replace batteries, resulting in energy efficiency being a major challenge. Clustering and multi-hop routing protocols are considered energy-efficient solutions for UWSN. However, the cluster-based routing protocols for traditional wireless networks could not be feasible for UWSN owing to the underwater current, low bandwidth, high water pressure, propagation delay, and error probability. To resolve these issues and achieve energy efficiency in UWSN, this study focuses on designing the metaheuristics-based clustering with a routing protocol for UWSN, named MCR-UWSN. The goal of the MCR-UWSN technique is to elect an efficient set of cluster heads (CHs) and route to destination. The MCR-UWSN technique involves the designing of cultural emperor penguin optimizer-based clustering (CEPOC) techniques to construct clusters. Besides, the multi-hop routing technique, alongside the grasshopper optimization (MHR-GOA) technique, is derived using multiple input parameters. The performance of the MCR-UWSN technique was validated, and the results are inspected in terms of different measures. The experimental results highlighted an enhanced performance of the MCR-UWSN technique over the recent state-of-art techniques.
Journal Article
Cluster head selection for energy efficient and delay-less routing in wireless sensor network
2019
Wireless sensor network (WSN) is comprised of tiny, cheap and power-efficient sensor nodes which effectively transmit data to the base station. The main challenge of WSN is the distance, energy and time delay. The power resource of the sensor node is a non-rechargeable battery. Here the greater the distance between the nodes, higher the energy consumption. For having the effective transmission of data with less energy, the cluster-head approach is used. It is well known that the time delay is directly proportional to the distance between the nodes and the base station. The cluster head is selected in such a way that it is spatially closer enough to the base station as well as the sensor nodes. So, the time delay can be substantially reduced. This, in turn, the transmission speed of the data packets can be increased. Firefly algorithm is developed for maximizing the energy efficiency of network and lifetime of nodes by selecting the cluster head optimally. In this paper firefly with cyclic randomization is proposed for selecting the best cluster head. The network performance is increased in this method when compared to the other conventional algorithms.
Journal Article
Scientific Developments and New Technological Trajectories in Sensor Research
by
Coccia, Mario
,
Mosleh, Melika
,
Roshani, Saeed
in
Artificial intelligence
,
Biosensors
,
Data analysis
2021
Scientific developments and new technological trajectories in sensors play an important role in understanding technological and social change. The goal of this study is to develop a scientometric analysis (using scientific documents and patents) to explain the evolution of sensor research and new sensor technologies that are critical to science and society. Results suggest that new directions in sensor research are driving technological trajectories of wireless sensor networks, biosensors and wearable sensors. These findings can help scholars to clarify new paths of technological change in sensors and policymakers to allocate research funds towards research fields and sensor technologies that have a high potential of growth for generating a positive societal impact.
Journal Article
Software Defined Networking for Improved Wireless Sensor Network Management: A Survey
by
Ndiaye, Musa
,
Hancke, Gerhard
,
Abu-Mahfouz, Adnan
in
Internet of Things
,
network management abstractions
,
network management architecture
2017
Wireless sensor networks (WSNs) are becoming increasingly popular with the advent of the Internet of things (IoT). Various real-world applications of WSNs such as in smart grids, smart farming and smart health would require a potential deployment of thousands or maybe hundreds of thousands of sensor nodes/actuators. To ensure proper working order and network efficiency of such a network of sensor nodes, an effective WSN management system has to be integrated. However, the inherent challenges of WSNs such as sensor/actuator heterogeneity, application dependency and resource constraints have led to challenges in implementing effective traditional WSN management. This difficulty in management increases as the WSN becomes larger. Software Defined Networking (SDN) provides a promising solution in flexible management WSNs by allowing the separation of the control logic from the sensor nodes/actuators. The advantage with this SDN-based management in WSNs is that it enables centralized control of the entire WSN making it simpler to deploy network-wide management protocols and applications on demand. This paper highlights some of the recent work on traditional WSN management in brief and reviews SDN-based management techniques for WSNs in greater detail while drawing attention to the advantages that SDN brings to traditional WSN management. This paper also investigates open research challenges in coming up with mechanisms for flexible and easier SDN-based WSN configuration and management.
Journal Article
An Improved IDAF-FIT Clustering Based ASLPP-RR Routing with Secure Data Aggregation in Wireless Sensor Network
by
Sekaran Ramesh
,
Alzubi, Jafar A
,
Ramachandran Manikandan
in
Agglomeration
,
Algorithms
,
Clustering
2021
In recent years, Wireless Sensor Network (WSN) became a key technology for monitoring and tracking applications in a wide application range. Still, an energy-efficient data gathering protocol has become the most challenging issue. This is because each sensor node in the network is equipped with limited energy resources. To achieve better energy efficiency, better network communication, and minimized delay, clustering is introduced. Therefore, the clustering-based techniques for data gathering play a vital role in terms of energy-saving and increasing the lifetime of the network due to cluster head election and data aggregation. In this proposed methodology, the Integration of Distributed Autonomous Fashion with Fuzzy If-then Rules (IDAF-FIT) algorithm is proposed for clustering, and also the Cluster Head (CH) is elected in the meanwhile. After that, to transmit the packet from source to the destination node by choosing an optimal path, the routing concept is initiated. For this purpose, an Adaptive Source Location Privacy Preservation Technique using Randomized Routes (ASLPP-RR) is presented for routing. Also, Secure Data Aggregation based on Principle Component Analysis (SDA-PCA) algorithm is performed with end-to-end confidentiality and integrity. Finally, the security of confidential data is analyzed properly to obtain a better result than the existing approaches. The overall performance of the proposed methodology when compared with existing is expressed in terms of 20% higher packet delivery ratio, 15% lower packet dropping ratio, 18% higher residual energy, 22% higher network lifetime, and 16% lower energy consumption.
Journal Article
Remote health monitoring of elderly through wearable sensors
by
Al-khafajiy, Mohammed
,
Baker, Thar
,
Chalmers, Carl
in
Data acquisition
,
Early intervention
,
Older people
2019
Due to a rapidly increasing aging population and its associated challenges in health and social care, Ambient Assistive Living has become the focal point for both researchers and industry alike. The need to manage or even reduce healthcare costs while improving the quality of service is high government agendas. Although, technology has a major role to play in achieving these aspirations, any solution must be designed, implemented and validated using appropriate domain knowledge. In order to overcome these challenges, the remote real-time monitoring of a person’s health can be used to identify relapses in conditions, therefore, enabling early intervention. Thus, the development of a smart healthcare monitoring system, which is capable of observing elderly people remotely, is the focus of the research presented in this paper. The technology outlined in this paper focuses on the ability to track a person’s physiological data to detect specific disorders which can aid in Early Intervention Practices. This is achieved by accurately processing and analysing the acquired sensory data while transmitting the detection of a disorder to an appropriate career. The finding reveals that the proposed system can improve clinical decision supports while facilitating Early Intervention Practices. Our extensive simulation results indicate a superior performance of the proposed system: low latency (96% of the packets are received with less than 1 millisecond) and low packets-lost (only 2.2% of total packets are dropped). Thus, the system runs efficiently and is cost-effective in terms of data acquisition and manipulation.
Journal Article
Optical Fiber Sensors and Sensing Networks: Overview of the Main Principles and Applications
2022
Optical fiber sensors present several advantages in relation to other types of sensors. These advantages are essentially related to the optical fiber properties, i.e., small, lightweight, resistant to high temperatures and pressure, electromagnetically passive, among others. Sensing is achieved by exploring the properties of light to obtain measurements of parameters, such as temperature, strain, or angular velocity. In addition, optical fiber sensors can be used to form an Optical Fiber Sensing Network (OFSN) allowing manufacturers to create versatile monitoring solutions with several applications, e.g., periodic monitoring along extensive distances (kilometers), in extreme or hazardous environments, inside structures and engines, in clothes, and for health monitoring and assistance. Most of the literature available on this subject focuses on a specific field of optical sensing applications and details their principles of operation. This paper presents a more broad overview, providing the reader with a literature review that describes the main principles of optical sensing and highlights the versatility, advantages, and different real-world applications of optical sensing. Moreover, it includes an overview and discussion of a less common architecture, where optical sensing and Wireless Sensor Networks (WSNs) are integrated to harness the benefits of both worlds.
Journal Article