Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
43,573 result(s) for "sequence homology"
Sort by:
Copy number variation at the GL7 locus contributes to grain size diversity in rice
Jiayang Li, Xudong Zhu, Qian Qian and colleagues report cloning of the Grain Length on Chromosome 7 ( GL7 ) locus in rice and identify a copy number variant that increases grain length and improves grain quality. They demonstrate how interactions with other grain length–related genes may be used to improve breeding. Copy number variants (CNVs) are associated with changes in gene expression levels and contribute to various adaptive traits 1 , 2 . Here we show that a CNV at the Grain Length on Chromosome 7 ( GL7 ) locus contributes to grain size diversity in rice ( Oryza sativa L.). GL7 encodes a protein homologous to Arabidopsis thaliana LONGIFOLIA proteins, which regulate longitudinal cell elongation. Tandem duplication of a 17.1-kb segment at the GL7 locus leads to upregulation of GL7 and downregulation of its nearby negative regulator, resulting in an increase in grain length and improvement of grain appearance quality. Sequence analysis indicates that allelic variants of GL7 and its negative regulator are associated with grain size diversity and that the CNV at the GL7 locus was selected for and used in breeding. Our work suggests that pyramiding beneficial alleles of GL7 and other yield- and quality-related genes may improve the breeding of elite rice varieties.
Natural variation at the soybean J locus improves adaptation to the tropics and enhances yield
Fanjiang Kong, Zhixi Tian, Xingliang Hou, Baohui Liu and colleagues report the cloning and functional characterization of J , the locus underlying the long-juvenile (LJ) trait that has enabled tropical cultivation of soybean. They show that J, an ortholog of Arabidopsis ELF3, downregulates the expression of E1 , thereby promoting flowering under short-day conditions. Soybean is a major legume crop originating in temperate regions, and photoperiod responsiveness is a key factor in its latitudinal adaptation. Varieties from temperate regions introduced to lower latitudes mature early and have extremely low grain yields. Introduction of the long-juvenile (LJ) trait extends the vegetative phase and improves yield under short-day conditions, thereby enabling expansion of cultivation in tropical regions. Here we report the cloning and characterization of J , the major classical locus conferring the LJ trait, and identify J as the ortholog of Arabidopsis thaliana EARLY FLOWERING 3 ( ELF3 ). J depends genetically on the legume-specific flowering repressor E1 , and J protein physically associates with the E1 promoter to downregulate its transcription, relieving repression of two important FLOWERING LOCUS T ( FT ) genes and promoting flowering under short days. Our findings identify an important new component in flowering-time control in soybean and provide new insight into soybean adaptation to tropical regions.
MACSE: Multiple Alignment of Coding SEquences Accounting for Frameshifts and Stop Codons
Until now the most efficient solution to align nucleotide sequences containing open reading frames was to use indirect procedures that align amino acid translation before reporting the inferred gap positions at the codon level. There are two important pitfalls with this approach. Firstly, any premature stop codon impedes using such a strategy. Secondly, each sequence is translated with the same reading frame from beginning to end, so that the presence of a single additional nucleotide leads to both aberrant translation and alignment.We present an algorithm that has the same space and time complexity as the classical Needleman-Wunsch algorithm while accommodating sequencing errors and other biological deviations from the coding frame. The resulting pairwise coding sequence alignment method was extended to a multiple sequence alignment (MSA) algorithm implemented in a program called MACSE (Multiple Alignment of Coding SEquences accounting for frameshifts and stop codons). MACSE is the first automatic solution to align protein-coding gene datasets containing non-functional sequences (pseudogenes) without disrupting the underlying codon structure. It has also proved useful in detecting undocumented frameshifts in public database sequences and in aligning next-generation sequencing reads/contigs against a reference coding sequence.MACSE is distributed as an open-source java file executable with freely available source code and can be used via a web interface at: http://mbb.univ-montp2.fr/macse.
Programmable base editing of zebrafish genome using a modified CRISPR-Cas9 system
Precise genetic modifications in model animals are essential for biomedical research. Here, we report a programmable “base editing” system to induce precise base conversion with high efficiency in zebrafish. Using cytidine deaminase fused to Cas9 nickase, up to 28% of site-specific single-base mutations are achieved in multiple gene loci. In addition, an engineered Cas9-VQR variant with 5′-NGA PAM specificities is used to induce base conversion in zebrafish. This shows that Cas9 variants can be used to expand the utility of this technology. Collectively, the targeted base editing system represents a strategy for precise and effective genome editing in zebrafish. The use of base editing enables precise genetic modifications in model animals. Here the authors show high efficient single-base editing in zebrafish using modified Cas9 and its VQR variant with an altered PAM specificity.
Natural variation in ARF18 gene simultaneously affects seed weight and silique length in polyploid rapeseed
Seed weight is a complex trait controlled by polygenes, and its underlying regulatory mechanisms, especially those involving polyploidy crops, remain elusive. Brassica napus L., which is the second leading crop source of vegetable oil around the world, is an important tetraploid (4×) crop. Our results have generated three significant findings. ( i ) By combining the linkage and associated analysis, this study revealed the first (to our knowledge) quantitative trait locus (QTL) in rapeseed, which will provide insights for QTL cloning in polyploidy crops. ( ii ) The functional gene and marker could be useful in rapeseed breeding. ( iii ) We revealed a maternal regulatory pathway affecting seed weight that differs from the mechanisms described in previous reports. Seed weight (SW), which is one of the three major factors influencing grain yield, has been widely accepted as a complex trait that is controlled by polygenes, particularly in polyploid crops. Brassica napus L., which is the second leading crop source for vegetable oil around the world, is a tetraploid (4×) species. In the present study, we identified a major quantitative trait locus (QTL) on chromosome A9 of rapeseed in which the genes for SW and silique length (SL) were colocated. By fine mapping and association analysis, we uncovered a 165-bp deletion in the auxin-response factor 18 ( ARF18 ) gene associated with increased SW and SL. ARF18 encodes an auxin-response factor and shows inhibitory activity on downstream auxin genes. This 55-aa deletion prevents ARF18 from forming homodimers, in turn resulting in the loss of binding activity. Furthermore, reciprocal crossing has shown that this QTL affects SW by maternal effects. Transcription analysis has shown that ARF18 regulates cell growth in the silique wall by acting via an auxin-response pathway. Together, our results suggest that ARF18 regulates silique wall development and determines SW via maternal regulation. In addition, our study reveals the first (to our knowledge) QTL in rapeseed and may provide insights into gene cloning involving polyploid crops.
Evidence against a Beneficial Effect of Irisin in Humans
Brown adipose tissue has gained interest as a potential target to treat obesity and metabolic diseases. Irisin is a newly identified hormone secreted from skeletal muscle enhancing browning of white fat cells, which improves systemic metabolism by increasing energy expenditure in mice. The discovery of irisin raised expectations of its therapeutic potential to treat metabolic diseases. However, the effect of irisin in humans is unclear. Analyses of genomic DNA, mRNA and expressed sequence tags revealed that FNDC5, the gene encoding the precursor of irisin, is present in rodents and most primates, but shows in humans a mutation in the conserved start codon ATG to ATA. HEK293 cells transfected with a human FNDC5 construct with ATA as start codon resulted in only 1% full-length protein compared to human FNDC5 with ATG. Additionally, in vitro contraction of primary human myotubes by electrical pulse stimulation induced a significant increase in PGC1α mRNA expression. However, FNDC5 mRNA level was not altered. FNDC5 mRNA expression in muscle biopsies from two different human exercise studies was not changed by endurance or strength training. Preadipocytes isolated from human subcutaneous adipose tissue exhibited differentiation to brite human adipocytes when incubated with bone morphogenetic protein (BMP) 7, but neither recombinant FNDC5 nor irisin were effective. In conclusion, our findings suggest that it is rather unlikely that the beneficial effect of irisin observed in mice can be translated to humans.
Evolutionary insights into host–pathogen interactions from mammalian sequence data
Key Points Infections are possibly the major selective pressure acting on humans, and host–pathogen interactions contribute to shaping the genetic diversity of both organisms. Comparisons among species provide a snapshot of selective events that have been unfolding over long timescales. These approaches use extant genetic diversity and phylogenetic relationships among species to identify positively selected sites. Positive selection often acts on a limited number of sites in a protein that is otherwise selectively constrained; one example is the localized signal of selection at Niemann–Pick C1 protein (NPC1), the receptor for the Ebola virus. As epitomized by the evolutionary history of tripartite motif-containing 5 ( TRIM5 ), past infection events may leave a signature that affects the ability of extant species to fight emerging pathogens. Protein regions at the host–pathogen interface are expected to be targeted by the strongest selective pressure (this is the case for dipeptidyl peptidase 4 (DPP4) and angiotensin-converting enzyme 2 (ACE2), which act as receptors for coronaviruses). Other mammals host a wide range of viruses that are highly pathogenic for humans. Sequencing the genomes of these pathogens will be instrumental in refining our understanding of the process of host–pathogen interaction. Pathogen-driven natural selection is not limited to the immune system: genes that encode incidental pathogen receptors and components of the contact system and coagulation cascade can also be targeted. Host–pathogen interactions influence genetic diversity, and comparative genomic analyses are beginning to dissect genetic determinants involved in this process. This Review describes examples of such host–pathogen interactions and outline evolutionary approaches that are useful for identifying genomic regions associated with susceptibility to infection in mammals. Infections are one of the major selective pressures acting on humans, and host-pathogen interactions contribute to shaping the genetic diversity of both organisms. Evolutionary genomic studies take advantage of experiments that natural selection has been performing over millennia. In particular, inter-species comparative genomic analyses can highlight the genetic determinants of infection susceptibility or severity. Recent examples show how evolution-guided approaches can provide new insights into host–pathogen interactions, ultimately clarifying the basis of host range and explaining the emergence of different diseases. We describe the latest developments in comparative immunology and evolutionary genetics, showing their relevance for understanding the molecular determinants of infection susceptibility in mammals.
Comprehensive identification of mRNA isoforms reveals the diversity of neural cell-surface molecules with roles in retinal development and disease
Genes encoding cell-surface proteins control nervous system development and are implicated in neurological disorders. These genes produce alternative mRNA isoforms which remain poorly characterized, impeding understanding of how disease-associated mutations cause pathology. Here we introduce a strategy to define complete portfolios of full-length isoforms encoded by individual genes. Applying this approach to neural cell-surface molecules, we identify thousands of unannotated isoforms expressed in retina and brain. By mass spectrometry we confirm expression of newly-discovered proteins on the cell surface in vivo. Remarkably, we discover that the major isoform of a retinal degeneration gene, CRB1 , was previously overlooked. This CRB1 isoform is the only one expressed by photoreceptors, the affected cells in CRB1 disease. Using mouse mutants, we identify a function for this isoform at photoreceptor-glial junctions and demonstrate that loss of this isoform accelerates photoreceptor death. Therefore, our isoform identification strategy enables discovery of new gene functions relevant to disease. Here the authors present an approach that can reveal the full complement of mRNA isoforms encoded by individual genes, and they identify a major isoform of the retinal degeneration gene CRB1 which functions at the cell-cell junctions of the outer limiting membrane to promote photoreceptor survival.
A tick-borne segmented RNA virus contains genome segments derived from unsegmented viral ancestors
Although segmented and unsegmented RNA viruses are commonplace, the evolutionary links between these two very different forms of genome organization are unclear. We report the discovery and characterization of a tick-borne virus—Jingmen tick virus (JMTV)—that reveals an unexpected connection between segmented and unsegmented RNA viruses. The JMTV genome comprises four segments, two of which are related to the nonstructural protein genes of the genus Flavivirus (family Flaviviridae), whereas the remaining segments are unique to this virus, have no known homologs, and contain a number of features indicative of structural protein genes. Remarkably, homology searching revealed that sequences related to JMTV were present in the cDNA library from Toxocara canis (dog roundworm; Nematoda), and that shared strong sequence and structural resemblances. Epidemiological studies showed that JMTV is distributed in tick populations across China, especially Rhipicephalus and Haemaphysalis spp., and experiences frequent host-switching and genomic reassortment. To our knowledge, JMTV is the first example of a segmented RNA virus with a genome derived in part from unsegmented viral ancestors.
A bHLH-Type Transcription Factor, ABA-INDUCIBLE BHLH-TYPE TRANSCRIPTION FACTOR/JA-ASSOCIATED MYC2-LIKE1, Acts as a Repressor to Negatively Regulate Jasmonate Signaling in Arabidopsis
Jasmonates (JAs) are plant hormones that regulate the balance between plant growth and responses to biotic and abiotic stresses. Although recent studies have uncovered the mechanisms for JA-induced responses in Arabidopsis thaliana, the mechanisms by which plants attenuate the JA-induced responses remain elusive. Here, we report that a basic helix-loop-helix-type transcription factor, ABA-INDUCIBLE BHLH-TYPE TRANSCRIPTION FACTOR/JA-ASSOCIATED MYC2-LIKE1 (JAM1), acts as a transcriptional repressor and negatively regulates JA signaling. Gain-of-function transgenic plants expressing the chimeric repressor for JAM1 exhibited substantial reduction of JA responses, including JA-induced inhibition of root growth, accumulation of anthocyanin, and male fertility. These plants were also compromised in resistance to attack by the insect herbivore Spodoptera exigua. Conversely, jam1 loss-of-function mutants showed enhanced JA responsiveness, including increased resistance to insect attack. JAM1 and MYC2 competitively bind to the target sequence of MYC2, which likely provides the mechanism for negative regulation of JA signaling and suppression of MYC2 functions by JAM1. These results indicate that JAM1 negatively regulates JA signaling, thereby playing a pivotal role in fine-tuning of JA-mediated stress responses and plant growth.