Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeDegree TypeIs Full-Text AvailableSubjectCountry Of PublicationPublisherSourceGranting InstitutionTarget AudienceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
179,188
result(s) for
"sewage"
Sort by:
Free-living bacteria and potential bacterial pathogens in sewage treatment plants
2018
To comprehensively understand the profile of free-living bacteria and potential bacterial pathogens in sewage treatment plants (STPs), this study applied high-throughput sequencing-based metagenomics approaches to investigate the effects of activated sludge (AS) treatment process and ultraviolet (UV) disinfection on the community of bacterial pathogens in two full-scale STPs. A total of 23 bacterial genera were identified as free-living bacteria, and 243 species/OTU97% were identified as potential bacterial pathogens, 6 of which were confidently detected in the STPs (with the total abundances ranging from 0.02 to 14.19%). Both diversity and relative abundance of the detected bacterial pathogens decreased obviously after AS treatment process (p < 0.05), and increased slightly after sedimentation (p < 0.05). UV disinfection shows no obvious effects on the total relative abundance of the free-living pathogenic bacteria in sewage. Although large amounts of the particle-bound pathogens were eliminated through the sewage treatment process, the STPs could not effectively remove the free-living bacterial pathogens, and some pathogenic bacteria (e.g., Pseudomonas aeruginosa) present in the effluent had higher relative abundance after UV disinfection. Overall, the results extend our knowledge regarding the community of potential pathogens (especially free-living pathogens) in STPs.
Journal Article
The other dark matter : the science and business of turning waste into wealth and health
\"In the world today, we face considerable challenges, and while new ones pile on, the old standbys of fossil fuel overuse, greenhouse gas emissions, resource scarcity, food security, and weather and water extremes like droughts and floods remain. Fortunately, scientists are studying myriad ways human waste can help. Science journalist Lina Zeldovich argues in The Other Dark Matter that human excrement is a resource, cheap and widely available, that can be converted into a sustainable energy source, act as an organic fertilizer, provide effective medicinal therapy for resistant bacterial infection, and much more. Zeldovich profiles the pioneers of this repurposing, including startups in remote African villages and those in American cities that convert sewage into crude oil and collect specimens from volunteers to treat patients battling superbugs. The Other Dark Matter begins with a broad overview of our history of excrement disposal. The author's vignettes touch on ancient Roman sewage systems, Medieval latrines, and other methods used around the world to distance people from their excrement. Today's immense, computerized treatment plants are only the latest in a long line of engineering marvels that have distanced us from disease, she shows, but, importantly, they have also caused considerable damage to our earth's ecology. Zeldovich explains the massive redistribution of nutrients and sanitation inequities across the globe, drawing on her research and many interviews\"-- Provided by publisher.
Tracing sewage contamination based on sterols and stanols markers within the mainland aquatic ecosystem: a case study of Linggi catchment, Malaysia
by
Tawnie, Ismail
,
Juahir, Hafizan
,
Sefie, Anuar
in
Aged
,
Aquatic ecosystems
,
Aquatic environment
2021
Sewage contamination is a principal concern in water quality management as pathogens in sewage can cause diseases and lead to detrimental health effects in humans. This study examines the distribution of seven sterol compounds, namely coprostanol, epi-coprostanol, cholesterol, cholestanol, stigmasterol, campesterol, and β-sitosterol in filtered and particulate phases of sewage treatment plants (STPs), groundwater, and river water. For filtered samples, solid-phase extraction (SPE) was employed while for particulate samples were sonicated. Quantification was done by using gas chromatography-mass spectrometer (GC-MS). Faecal stanols (coprostanol and epi-coprostanol) and β-sitosterol were dominant in most STP samples. Groundwater samples were influenced by natural/biogenic sterol, while river water samples were characterized by a mixture of sources. Factor loadings from principal component analysis (PCA) defined fresh input of biogenic sterol and vascular plants (positive varimax factor (VF)1), aged/treated sewage sources (negative VF1), fresh- and less-treated sewage and domestic sources (positive VF2), biological sewage effluents (negative VF2), and fresh-treated sewage sources (VF3) in the samples. Association of VF loadings and factor score values illustrated the correlation of STP effluents and the input of biogenic and plant sterol sources in river and groundwater samples of Linggi. This study focuses on sterol distribution and its potential sources; these findings will aid in sewage assessment in the aquatic environment.
Journal Article
Overview of legislation on sewage sludge management in developed countries worldwide
2016
The need to apply innovative technologies for maximizing the efficiency and minimizing the carbon footprint of sewage treatment plants has upgraded sewage sludge management to a highly sophisticated research and development sector. Sewage sludge cannot be regarded solely as ‘waste’; it is a renewable resource for energy and material recovery. From this perspective, legislation on sewage sludge management tends to incorporate issues related to environmental protection, public health, climate change impacts and socio-economic benefits. This paper reviews the existing legislative frameworks and policies on sewage sludge management in various countries, highlighting the common ground as well as the different priorities in all cases studied. More specifically, the key features of legislation regarding sludge management in developed countries such as the USA, Japan, Australia, New Zealand and the European Union (EU27) are discussed.
Journal Article
Characterization and removal of microplastics in a sewage treatment plant from urban Nagpur, India
by
Kamdi, Pooja
,
Das, Sera
,
Bafana, Amit
in
Analytical methods
,
Atmospheric Protection/Air Quality Control/Air Pollution
,
Contamination
2023
Sewage treatment plant (STP) acts as a potential source of microplastic contamination in the environment. The presence of microplastics in the sewage treatment plant is reported over the globe in varying concentrations. Hence, the current study is intended to evaluate the presence and abundance of microplastics occurring in sewage treatment plants in India. The samples were processed through digestion and density separation, followed by microscopic and polymer identification through Fourier transform infrared spectroscopy. Also, different wastewater parameters were studied to analyze their influence. High microplastic concentrations were detected in the influent (1860 ± 265 MPs/L), which reduced by > 90%, to around 148 ± 51 MPs/L in the effluent. The concentration of microplastics in sewage sludge was 830 MPs/kg. The prominent plastic types identified include low-density polyethylene, polypropylene, polyurethane, polyvinyl chloride, and rayon. The smaller particles prevail in the effluent, releasing around 30 billion particles per day to the environment. This suggests that the current STP is efficient in removing the majority of the particles, but considerations are needed to avoid the ecological risks associated.
Journal Article
Photo-Activated Sludge : a novel algal-bacterial biotreatment for nitrogen removal from wastewater
Ammoniumrijk afvalwater wordt veelal geproduceerd door gemeentelijk, industrieel en landbouwafval, en effluent uit anaerobe afvalwaterzuiveringsmethoden. Dit vormt een risico voor het milieu vanwege de hoge concentratie aan voedingsstoffen (stikstof en fosfor), wat eutrofièering in waterpartijen kan bevorderen en daarmee de kwaliteit van ecosystemen kan aantasten. Als innovatieve oplossing hierop is een nieuw biologisch verwerkingsmechanisme genaamd Photo-Activated Sludge (PAS) geèevalueerd, wat gebruik maakt van een consortium van microalgen en bacterièen voor de zuivering van ammoniumrijk afvalwater.