Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
250,480 result(s) for "sign"
Sort by:
The kids' guide to sign language
\"Step-by-step instructions show how to perform useful phrases using American Sign Language\"--Provided by publisher.
Multi-Stream General and Graph-Based Deep Neural Networks for Skeleton-Based Sign Language Recognition
Sign language recognition (SLR) aims to bridge speech-impaired and general communities by recognizing signs from given videos. However, due to the complex background, light illumination, and subject structures in videos, researchers still face challenges in developing effective SLR systems. Many researchers have recently sought to develop skeleton-based sign language recognition systems to overcome the subject and background variation in hand gesture sign videos. However, skeleton-based SLR is still under exploration, mainly due to a lack of information and hand key point annotations. More recently, researchers have included body and face information along with hand gesture information for SLR; however, the obtained performance accuracy and generalizability properties remain unsatisfactory. In this paper, we propose a multi-stream graph-based deep neural network (SL-GDN) for a skeleton-based SLR system in order to overcome the above-mentioned problems. The main purpose of the proposed SL-GDN approach is to improve the generalizability and performance accuracy of the SLR system while maintaining a low computational cost based on the human body pose in the form of 2D landmark locations. We first construct a skeleton graph based on 27 whole-body key points selected among 67 key points to address the high computational cost problem. Then, we utilize the multi-stream SL-GDN to extract features from the whole-body skeleton graph considering four streams. Finally, we concatenate the four different features and apply a classification module to refine the features and recognize corresponding sign classes. Our data-driven graph construction method increases the system’s flexibility and brings high generalizability, allowing it to adapt to varied data. We use two large-scale benchmark SLR data sets to evaluate the proposed model: The Turkish Sign Language data set (AUTSL) and Chinese Sign Language (CSL). The reported performance accuracy results demonstrate the outstanding ability of the proposed model, and we believe that it will be considered a great innovation in the SLR domain.
A bibliography of sign languages, 2008-2017
This concise bibliography on Sign Languages was compiled on the occasion of the 20th international Congress of Linguists in Cape Town, South Africa, in July 2018. The selection of titles is drawn from the Linguistic Bibliography and gives an overview of scholarship on Sign language over the past 10 years. The introduction is by Myriam Vermeerbergen (KU Leuven & Stellenbosch University) and Anna-Lena Nilsson (NTNU - Norwegian University of Science and Technology) gives an overview of the most recent developments in the field.
Deepsign: Sign Language Detection and Recognition Using Deep Learning
The predominant means of communication is speech; however, there are persons whose speaking or hearing abilities are impaired. Communication presents a significant barrier for persons with such disabilities. The use of deep learning methods can help to reduce communication barriers. This paper proposes a deep learning-based model that detects and recognizes the words from a person’s gestures. Deep learning models, namely, LSTM and GRU (feedback-based learning models), are used to recognize signs from isolated Indian Sign Language (ISL) video frames. The four different sequential combinations of LSTM and GRU (as there are two layers of LSTM and two layers of GRU) were used with our own dataset, IISL2020. The proposed model, consisting of a single layer of LSTM followed by GRU, achieves around 97% accuracy over 11 different signs. This method may help persons who are unaware of sign language to communicate with persons whose speech or hearing is impaired.
Artificial Intelligence Technologies for Sign Language
AI technologies can play an important role in breaking down the communication barriers of deaf or hearing-impaired people with other communities, contributing significantly to their social inclusion. Recent advances in both sensing technologies and AI algorithms have paved the way for the development of various applications aiming at fulfilling the needs of deaf and hearing-impaired communities. To this end, this survey aims to provide a comprehensive review of state-of-the-art methods in sign language capturing, recognition, translation and representation, pinpointing their advantages and limitations. In addition, the survey presents a number of applications, while it discusses the main challenges in the field of sign language technologies. Future research direction are also proposed in order to assist prospective researchers towards further advancing the field.
Grammar, Gesture, and Meaning in American Sign Language
In sign languages of the deaf some signs can meaningfully point toward things or can be meaningfully placed in the space ahead of the signer. This obligatory part of fluent grammatical signing has no parallel in vocally produced languages. This book focuses on American Sign Language to examine the grammatical and conceptual purposes served by these directional signs. It guides the reader through ASL grammar, the different categories of directional signs, the types of spatial representations signs are directed toward, how such spatial conceptions can be represented in mental space theory, and the conceptual purposes served by these signs. The book demonstrates a remarkable integration of grammar and gesture in the service of constructing meaning. These results also suggest that our concept of 'language' has been much too narrow and that a more comprehensive look at vocally produced languages will reveal the same integration of gestural, gradient, and symbolic elements.