Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
5,820 result(s) for "signalling network"
Sort by:
Membrane Progesterone Receptors (mPRs/PAQRs) Are Going beyond Its Initial Definitions
Progesterone (PRG) is a key cyclical reproductive hormone that has a significant impact on female organs in vertebrates. It is mainly produced by the corpus luteum of the ovaries, but can also be generated from other sources such as the adrenal cortex, Leydig cells of the testes and neuronal and glial cells. PRG has wide-ranging physiological effects, including impacts on metabolic systems, central nervous systems and reproductive systems in both genders. It was first purified as an ovarian steroid with hormonal function for pregnancy, and is known to play a role in pro-gestational proliferation during pregnancy. The main function of PRG is exerted through its binding to progesterone receptors (nPRs, mPRs/PAQRs) to evoke cellular responses through genomic or non-genomic signaling cascades. Most of the existing research on PRG focuses on classic PRG-nPR-paired actions such as nuclear transcriptional factors, but new evidence suggests that PRG also exerts a wide range of PRG actions through non-classic membrane PRG receptors, which can be divided into two sub-classes: mPRs/PAQRs and PGRMCs. The review will concentrate on recently found non-classical membrane progesterone receptors (mainly mPRs/PAQRs) and speculate their connections, utilizing the present comprehension of progesterone receptors.
Implementation of a Malicious Traffic Filter Using Snort and Wireshark as a Proof of Concept to Enhance Mobile Network Security
In the 1970s, roaming interconnections for cellular networks were designed for a few trusted parties. Hence, security was not a major concern. Today, the SS7 (Signaling System no. 7) solution that is several decades old is still used for many roaming interconnections. SS7 has been proven vulnerable to serious threats due to deregulation, expansion, and convergence with IP-based Long Term Evolution (LTE) networks. The limitations of the SS7 network that it is unable to check the subscriber's authentic location, verify their identity and filter illegitimate messages, makes the system vulnerable to attacks. Adversaries taking advantage of these shortcomings can inflict threats such as interception of calls and text messages, subscriber tracking and denial of service attacks. Although LTE and Diameter signaling protocols promise enhanced security keeping up with the latest attack vectors, their inherent flaws related to roaming interconnections are still there and continue to make the networks vulnerable. Hence, a highly secure signaling network is required to protect the operators and the subscribers from a diverse range of security attacks. SS7 network protocol layers, such as signaling connection control part (SCCP), transaction capabilities application part (TCAP), and global system for mobile Communications - mobile application part (GSM MAP), manage connectivity between networks and subscribers. An analysis of the parameters of these layers may provide a clear insight into any anomalies present. Unfortunately, these parameters are not validated and verified at the network's edge. The major contribution of this research is a methodology for detecting anomalies by checking malformed parameters and intra-layer parameter discrepancies at the abovementioned protocol layers. This paper provides an insight into the severity of SS7 network security vulnerabilities. Furthermore, it provides a proof of concept for the analysis of SS7 network traffic using the Wireshark packet capture tool and the Snort intrusion detection system (IDS) capable of detecting malicious traffic patterns.
Zinc’s Association with the CmPn/CmP Signaling Network in Breast Cancer Tumorigenesis
It is well-known that serum and cellular concentrations of zinc are altered in breast cancer patients. Specifically, there are notable zinc hyper-aggregates in breast tumor cells when compared to normal mammary epithelial cells. However, the mechanisms responsible for zinc accumulation and the consequences of zinc dysregulation are poorly understood. In this review, we detailed cellular zinc regulation/dysregulation under the influence of varying levels of sex steroids and breast cancer tumorigenesis to try to better understand the intricate relationship between these factors based on our current understanding of the CmPn/CmP signaling network. We also made some efforts to propose a relationship between zinc signaling and the CmPn/CmP signaling network.
An atlas of substrate specificities for the human serine/threonine kinome
Protein phosphorylation is one of the most widespread post-translational modifications in biology 1 , 2 . With advances in mass-spectrometry-based phosphoproteomics, 90,000 sites of serine and threonine phosphorylation have so far been identified, and several thousand have been associated with human diseases and biological processes 3 , 4 . For the vast majority of phosphorylation events, it is not yet known which of the more than 300 protein serine/threonine (Ser/Thr) kinases encoded in the human genome are responsible 3 . Here we used synthetic peptide libraries to profile the substrate sequence specificity of 303 Ser/Thr kinases, comprising more than 84% of those predicted to be active in humans. Viewed in its entirety, the substrate specificity of the kinome was substantially more diverse than expected and was driven extensively by negative selectivity. We used our kinome-wide dataset to computationally annotate and identify the kinases capable of phosphorylating every reported phosphorylation site in the human Ser/Thr phosphoproteome. For the small minority of phosphosites for which the putative protein kinases involved have been previously reported, our predictions were in excellent agreement. When this approach was applied to examine the signalling response of tissues and cell lines to hormones, growth factors, targeted inhibitors and environmental or genetic perturbations, it revealed unexpected insights into pathway complexity and compensation. Overall, these studies reveal the intrinsic substrate specificity of the human Ser/Thr kinome, illuminate cellular signalling responses and provide a resource to link phosphorylation events to biological pathways. Analysis of the kinase activity of 300 protein Ser/Thr kinases reveals that the substrate specificity of the kinome is substantially more diverse than expected and is driven extensively by negative selectivity
Integrated intra‐ and intercellular signaling knowledge for multicellular omics analysis
Molecular knowledge of biological processes is a cornerstone in omics data analysis. Applied to single‐cell data, such analyses provide mechanistic insights into individual cells and their interactions. However, knowledge of intercellular communication is scarce, scattered across resources, and not linked to intracellular processes. To address this gap, we combined over 100 resources covering interactions and roles of proteins in inter‐ and intracellular signaling, as well as transcriptional and post‐transcriptional regulation. We added protein complex information and annotations on function, localization, and role in diseases for each protein. The resource is available for human, and via homology translation for mouse and rat. The data are accessible via OmniPath ’s web service ( https://omnipathdb.org/ ), a Cytoscape plug‐in, and packages in R/Bioconductor and Python, providing access options for computational and experimental scientists. We created workflows with tutorials to facilitate the analysis of cell–cell interactions and affected downstream intracellular signaling processes. OmniPath provides a single access point to knowledge spanning intra‐ and intercellular processes for data analysis, as we demonstrate in applications studying SARS‐CoV‐2 infection and ulcerative colitis. SYNOPSIS Over 100 resources are integrated into OmniPath , a comprehensive knowledge base of intra‐ and inter‐cellular signaling. Workflows are provided and illustrated in case studies analyzing omics data in SARS‐CoV‐2 infection and ulcerative colitis. OmniPath includes 4,000,000 annotations for over 20,000 proteins. A new framework defining transmitter and receiver roles generalizes the concepts of ligand and receptor . Integrated analysis of intra‐ and intercellular signaling can be performed to study how cells affect each other in healthy and diseased conditions. Software tools and workflows in R and Python facilitate the analysis of bulk and single‐cell omics data using tools such as CellPhoneDB , NicheNet and CARNIVAL . Graphical Abstract Over 100 resources are integrated into OmniPath , a comprehensive knowledge base of intra‐ and inter‐cellular signaling. Workflows are provided and illustrated in case studies analyzing omics data in SARS‐CoV‐2 infection and ulcerative colitis.
Exploiting signaling rewiring in cancer cells with co‐existing oncogenic drivers
The development of tailored therapies designed to specifically target driver oncogenes has initiated a revolutionary era in cancer biology. The availability of a growing number of selective inhibitors has generated novel experimental and clinical paradigms. These represent an opportunity and a challenge for researchers and clinicians to delve deeper into the intricate dynamics of cancer development and response to treatment. By directly inhibiting key driver oncogenes involved in tumor initiation and progression, scientists have an unprecedented opportunity to conduct longitudinal and clonal evolutionary studies of how cancer cells adapt, rewire, and exploit conflictive or overlapping signaling dependencies in response to treatment in vitro and in vivo . This challenge has to be progressively resolved to discover more effective and personalized cancer therapies.
The Role of cGAS-STING Signalling in Metabolic Diseases: from Signalling Networks to Targeted Intervention
The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) is a crucial innate defence mechanism against viral infection in the innate immune system, as it principally induces the production of type I interferons. Immune responses and metabolic control are inextricably linked, and chronic low-grade inflammation promotes the development of metabolic diseases. The cGAS-STING pathway activated by double-stranded DNA (dsDNA), cyclic dinucleotides (CDNs), endoplasmic reticulum stress (ER stress), mitochondrial stress, and energy imbalance in metabolic cells and immune cells triggers proinflammatory responses and metabolic disorders. Abnormal overactivation of the pathway is closely associated with metabolic diseases such as obesity, nonalcoholic fatty liver disease (NAFLD), insulin resistance and cardiovascular diseases (CVDs). The interaction of cGAS-STING with other pathways, such as the nuclear factor-kappa B (NF-κB), Jun N-terminal kinase (JNK), AMP-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR), autophagy, pyroptosis and insulin signalling pathways, is considered an important mechanism by which cGAS-STING regulates inflammation and metabolism. This review focuses on the link between immune responses related to the cGAS-STING pathway and metabolic diseases and cGAS-STING interaction with other pathways for mediating signal input and affecting output. Moreover, potential inhibitors of the cGAS-STING pathway and therapeutic prospects against metabolic diseases are discussed. This review provides a comprehensive perspective on the involvement of STING in immune-related metabolic diseases.
The Alcatraz‐Strategy: a roadmap to break the connectivity barrier in malignant brain tumours
In recent years, the discovery of functional and communicative cellular tumour networks has led to a new understanding of malignant primary brain tumours. In this review, the authors shed light on the diverse nature of cell‐to‐cell connections in brain tumours and propose an innovative treatment approach to address the detrimental connectivity of these networks. The proposed therapeutic outlook revolves around three main strategies: (a) supramarginal resection removing a substantial portion of the communicating tumour cell front far beyond the gadolinium‐enhancing tumour mass, (b) morphological isolation at the single cell level disrupting structural cell‐to‐cell contacts facilitated by elongated cellular membrane protrusions known as tumour microtubes (TMs), and (c) functional isolation at the single cell level blocking TM‐mediated intercellular cytosolic exchange and inhibiting neuronal excitatory input into the malignant network. We draw an analogy between the proposed therapeutic outlook and the Alcatraz Federal Penitentiary, where inmates faced an impassable sea barrier and experienced both spatial and functional isolation within individual cells. Based on current translational efforts and ongoing clinical trials, we propose the Alcatraz‐Strategy as a promising framework to tackle the harmful effects of cellular brain tumour networks. This review introduces the ‘Alcatraz‐Strategy’ for malignant brain tumours, drawing parallels to Alcatraz's isolating barriers. By disrupting cellular tumour networks through supramarginal resection and targeted pharmacological therapy, it aims to decouple tumour cells, akin to the prison's spatial and functional inmate isolation. This approach offers a promising framework to counteract the malignant connectivity of brain tumour networks.
From CFTR to a CF signalling network: a systems biology approach to study Cystic Fibrosis
Background Cystic Fibrosis (CF) is a monogenic disease caused by mutations in the gene coding the Cystic Fibrosis Transmembrane Regulator (CFTR) protein, but its overall physio-pathology cannot be solely explained by the loss of the CFTR chloride channel function. Indeed, CFTR belongs to a yet not fully deciphered network of proteins participating in various signalling pathways. Methods We propose a systems biology approach to study how the absence of the CFTR protein at the membrane leads to perturbation of these pathways, resulting in a panel of deleterious CF cellular phenotypes. Results Based on publicly available transcriptomic datasets, we built and analyzed a CF network that recapitulates signalling dysregulations. The CF network topology and its resulting phenotypes were found to be consistent with CF pathology. Conclusion Analysis of the network topology highlighted a few proteins that may initiate the propagation of dysregulations, those that trigger CF cellular phenotypes, and suggested several candidate therapeutic targets. Although our research is focused on CF, the global approach proposed in the present paper could also be followed to study other rare monogenic diseases.
Network model of skeletal muscle cell signalling predicts differential responses to endurance and resistance exercise training
Exercise‐induced muscle adaptations vary based on exercise modality and intensity. We constructed a signalling network model from 87 published studies of human or rodent skeletal muscle cell responses to endurance or resistance exercise in vivo or simulated exercise in vitro. The network comprises 259 signalling interactions between 120 nodes, representing eight membrane receptors and eight canonical signalling pathways regulating 14 transcriptional regulators, 28 target genes and 12 exercise‐induced phenotypes. Using this network, we formulated a logic‐based ordinary differential equation model predicting time‐dependent molecular and phenotypic alterations following acute endurance and resistance exercises. Compared with nine independent studies, the model accurately predicted 18/21 (85%) acute responses to resistance exercise and 12/16 (75%) acute responses to endurance exercise. Detailed sensitivity analysis of differential phenotypic responses to resistance and endurance training showed that, in the model, exercise regulates cell growth and protein synthesis primarily by signalling via mechanistic target of rapamycin, which is activated by Akt and inhibited in endurance exercise by AMP‐activated protein kinase. Endurance exercise preferentially activates inflammation via reactive oxygen species and nuclear factor κB signalling. Furthermore, the expected preferential activation of mitochondrial biogenesis by endurance exercise was counterbalanced in the model by protein kinase C in response to resistance training. This model provides a new tool for investigating cross‐talk between skeletal muscle signalling pathways activated by endurance and resistance exercise, and the mechanisms of interactions such as the interference effects of endurance training on resistance exercise outcomes. What is the central question of this study? How do the cell signalling pathways regulating skeletal myocyte responses to resistance and endurance exercise interact? What is the main finding and its importance? A new systems model of skeletal muscle signalling pathways activated by resistance and endurance training was developed with eight canonical signalling pathways regulating 14 transcriptional regulators, 28 target genes and 12 exercise‐induced phenotypes. The model accurately predicted 85% of independent measurements for resistance exercise and 75% for endurance training. Analysis revealed pathways regulating the preferential activation of protein synthesis and cell growth by resistance training and inflammation by endurance exercise.