Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
294 result(s) for "simple leaves"
Sort by:
Compound and simple leaf woody species of the Chilean matorral are equally affected by extreme drought
Two main leaf types are recognized among vascular plant species: compound and simple. Compound leaves are believed to be photosynthetically more productive than simple ones, by diluting mass tissue in more projected area. Conversely, simple leaves are believed to be more stress-tolerant by packing mass tissue in less projected area during stress like drought. Nevertheless, convective cooling is more efficient in compound than simple leaves, a process that could alleviate water loss in drought periods. In Central Chile, woody species with simple and compound leaves coexist. This zone is facing a mega-drought event, causing browning and tree mortality. However, how severe droughts affect photosynthetic traits on both leaf-type species have not been addressed so far. We measured photosynthetic traits in well-watered and drought conditions in three compound and three simple leaf species, and drought response ratios were obtained. We hypothesized that with no water limitation compound leaf species will show higher net photosynthesis (AN) than simple leaf species associated with a higher mesophyll conductance (gm). Opposite results are expected for simple leaf species due to their stress-tolerant physiology, showing fewer changes in their photosynthetic traits. We found that gm and AN were larger in compound leaf species in well-watered conditions. With drought, both leaf-type species were negatively affected despite foliar temperature in compound leaf species was 4 °C lower. Our result suggests that regardless of leaf shape the matorral species in Central Chile will be seriously affected in their AN due to the megadrought currently affecting this zone.
Photosynthetic Responses to Salt Stress in Two Rice (Oryza sativa L.) Varieties
Assessing salt tolerance in plants under field conditions is a challenging task. The objective of this research was to assess the effectiveness of different methods (leaf disc assay and pot experiment) for evaluating salt tolerance in rice. Using two varieties with different salt tolerance, Changmaogu (CM) and 9311, under three NaCl levels (0, 0.3%, and 1.0%), we evaluated the photosynthetic performance in terms of chlorophyll content in leaf disc assays, as well as the photosynthetic rate (Pn), chlorophyll content, linear electron flow (LEF), and non-photochemical quenching (NPQ), in a semi-controlled pot experiment. In the leaf disc assay, CM showed a smaller decrease in chlorophyll content compared to 9311, especially under 1.0% salinity. Simultaneously, in the pot experiment, the CM variety employed flexible photosynthetic strategies, actively decreasing LEF and Pn after 5 days of salt stress (day 5) and then increasing photosynthetic capacity (chlorophyll content, LEF, and Pn) on day 10. Notably, the total chlorophyll content for the CM variety under 1.0% salinity was significantly higher than in the control, showing a 25.0% increase. Additionally, CM demonstrated NPQt sensitivity under 0.3% salinity, requiring an LEF of 150 to achieve an NPQt value of 3.0, compared to an LEF of 180 in the control. These results suggest that a simple leaf disc assay may not fully capture the adaptive mechanisms of rice plants under salinity stress. Therefore, we advocate for the use of more comprehensive methods, such as outdoor pot or field experiments, to gain a deeper understanding and more accurate evaluation of salt tolerance in rice.
Functional trait diversity and aboveground biomass of herbaceous vegetation in temperate forests of Kashmir Himalaya
Studying functional trait diversity can provide crucial clues about the adaptive survival strategies of regional plant species pool. Despite large-scale trait datasets available worldwide, the plant trait data from many biodiversity hotpot regions, like the Himalaya is still scarce. In this study, we aimed to investigate the plant functional traits and aboveground biomass of understory herbaceous vegetation in temperate forests of Overa-Aru wildlife sanctuary of Kashmir Himalaya. We also investigate how these functional traits correlate and what is the magnitude of trait-biomass relationship across the herbaceous species pool. For this, we conducted field sampling and measured leaf functional traits and aboveground biomass of 38 plant species in the study region during peak growing season (July–August) in the year 2021. The results revealed a significant interspecific trait variability among the species studied. We observed a high variability in leaf size and type spectra of the species, with nanophyll and simple leaf lamina, respectively, the most common types among the species studied. The correlation analysis revealed that plant height was positively correlated with aboveground biomass. The variation partitioning analysis revealed that the plant height explained the maximum fraction of variation in aboveground biomass, while least by specific leaf area. Overall, the findings from the present study provide useful insights in understanding trait-trait relationship and trait-environment interaction at the regional scale and can also help in recognizing adaptive functional traits of plant species that determine plant survival under the changing climate in this Himalayan region.
Advantage of Multiple Pods and Compound Leaf in Kabuli Chickpea under Heat Stress Conditions
Heat-related traits in chickpea (Cicer arietinum L.) play a crucial role in reducing the harmful effect of heat stress, as the increase in heat stress is predicted to occur in the coming years due to global warming as a result of climate change. The advantage of multiple pods per peduncle and compound (imparipinnate) leaf traits in kabuli chickpea has not been properly revealed under heat stress conditions. We, therefore, want (i) to provide insight into the advantage of multiple pods and compound leaf traits over single pod per node and simple (unifoliolate) leaf traits, and (ii) to determine the highest direct and indirect effects of agro-morphological traits on seed yield in chickpeas under rainfed conditions with prevailing heat stress. With a delayed sowing time, the plants were subjected to heat stress of more than 43 °C in flowering and pod setting stages under field conditions. According to the number of pods per node and leaf shape, plants were evaluated for yield and yield components, and were divided into six groups, namely (i) single-pod and compound leaf, (ii) single-pod and simple leaf, (iii) double-pods and compound leaf, (iv) double-pods and simple leaf, (v) multi-pods and compound leaf, and (vi) multi-pods and simple leaf. Plants with multi-pods and compound leaf traits had the highest seed yield, followed by plants with double-pods and compound leaf, while plants with single-pod and simple leaf had the lowest yield. The number of seeds and pods per plant, 100-seed weight, and leaf shape were the highest determinants of seed yield under heat stress conditions. It was concluded that multi-pods per peduncle and compound leaf traits had an obviously incontrovertible advantage in kabuli chickpeas under heat stress conditions. The plant shapes that nature has evolved for millions of years, which are mostly found in wild plants, have been proven by the current study to have a better fitness ability than plants shaped by human hands.
Keeping it simple: flowering plants tend to retain, and revert to, simple leaves
• A wide range of factors (developmental, physiological, ecological) with unpredictable interactions control variation in leaf form. Here, we examined the distribution of leaf morphologies (simple and complex forms) across angiosperms in a phylogenetic context to detect patterns in the directions of changes in leaf shape. • Seven datasets (diverse angiosperms and six nested clades, Sapindales, Apiales, Papaveraceae, Fabaceae, Lepidium, Solanum) were analysed using maximum likelihood and parsimony methods to estimate asymmetries in rates of change among character states. • Simple leaves are most frequent among angiosperm lineages today, were inferred to be ancestral in angiosperms and tended to be retained in evolution (stasis). Complex leaves slowly originated (‘gains’) and quickly reverted to simple leaves (‘losses’) multiple times, with a significantly greater rate of losses than gains. Lobed leaves may be a labile intermediate step between different forms. The nested clades showed mixed trends; Solanum, like the angiosperms in general, had higher rates of losses than gains, but the other clades had higher rates of gains than losses. • The angiosperm‐wide pattern could be taken as a null model to test leaf evolution patterns in particular clades, in which patterns of variation suggest clade‐specific processes that have yet to be investigated fully.
Bi-Pinnate Compound Serianthes nelsonii Leaf-Level Plasticity Magnifies Leaflet-Level Plasticity
Numerous leaf traits exhibit developmental plasticity in response to irradiance, an attribute that maximizes performance in the prevailing light. The use of leaflets to represent whole leaf traits of tree species with compound leaves is common in the acclimation literature. These methods ignore the potential for whole leaf plasticity to augment leaflet plasticity. We grew Serianthes nelsonii plants in incident light ranging from 6% to 100% of sunlight and quantified numerous leaflet and leaf traits to determine plasticity index (PI: (maximum-minimum)/maximum)) of each. Leaflet acclimation such as changes in length of palisade mesophyll occurred as expected. However, leaf-level morphometric traits such as rachillae insertion angle also exhibited acclimation potential. The leaf-level plastic behavior enabled acclimation approaches that simple-leaved species do not possess. We illuminate the need to look at the entire leaf when quantifying acclimation potential of tree leaves, and indicate that the historical use of leaflets to represent species with compound leaves under-estimated the acclimation potential when compared to species with simple leaves.
Comprehensive leaf size traits dataset for seven plant species from digitised herbarium specimen images covering more than two centuries
Morphological leaf traits are frequently used to quantify, understand and predict plant and vegetation functional diversity and ecology, including environmental and climate change responses. Although morphological leaf traits are easy to measure, their coverage for characterising variation within species and across temporal scales is limited. At the same time, there are about 3100 herbaria worldwide, containing approximately 390 million plant specimens dating from the 16th to 21st century, which can potentially be used to extract morphological leaf traits. Globally, plant specimens are rapidly being digitised and images are made openly available via various biodiversity data platforms, such as iDigBio and GBIF. Based on a pilot study to identify the availability and appropriateness of herbarium specimen images for comprehensive trait data extraction, we developed a spatio-temporal dataset on intraspecific trait variability containing 128,036 morphological leaf trait measurements for seven selected species. After scrutinising the metadata of digitised herbarium specimen images available from iDigBio and GBIF (21.9 million and 31.6 million images for Tracheophyta ; accessed date December 2020), we identified approximately 10 million images potentially appropriate for our study. From the 10 million images, we selected seven species ( Salix bebbiana Sarg., Alnus incana (L.) Moench, Viola canina L., Salix glauca L., Chenopodium album L., Impatiens capensis Meerb. and Solanum dulcamara L.) , which have a simple leaf shape, are well represented in space and time and have high availability of specimens per species. We downloaded 17,383 images. Out of these, we discarded 5779 images due to quality issues. We used the remaining 11,604 images to measure the area, length, width and perimeter on 32,009 individual leaf blades using the semi-automated tool TraitEx. The resulting dataset contains 128,036 trait records. We demonstrate its comparability to trait data measured in natural environments following standard protocols by comparing trait values from the TRY database. We conclude that the herbarium specimens provide valuable information on leaf sizes. The dataset created in our study, by extracting leaf traits from the digitised herbarium specimen images of seven selected species, is a promising opportunity to improve ecological knowledge about the adaptation of size-related leaf traits to environmental changes in space and time.
CRISPR/Cas9-Mediated Mutagenesis of RCO in Cardamine hirsuta
The small crucifer Cardamine hirsuta bears complex leaves divided into leaflets. This is in contrast to its relative, the reference plant Arabidopsis thaliana, which has simple leaves. Comparative studies between these species provide attractive opportunities to study the diversification of form. Here, we report on the implementation of the CRISPR/Cas9 genome editing methodology in C. hirsuta and with it the generation of novel alleles in the RCO gene, which was previously shown to play a major role in the diversification of form between the two species. Thus, genome editing can now be deployed in C. hirsuta, thereby increasing its versatility as a model system to study gene function and evolution.
LEAF DEVELOPMENT IN ANGIOSPERMS
▪ Abstract  Leaves are produced in succession on the shoot apical meristem (SAM) of a plant. The three landmark stages in leaf morphogenesis include initiation, acquisition of suborgan identities, and tissue differentiation. The expression of various genes relative to these steps in leaf morphogenesis is described. KNOTTED-like homeobox (KNOX) genes, FLO/LFY, and floral homeotic genes may be involved in generation of leaf shape and complexity. The differences between compound leaves and simple leaves in gene expression characteristics and morphogenetic patterns are discussed.
Comparative leaf anatomy and morphology of some neotropical Rutaceae: Pilocarpus Vahl and related genera
Previous anatomical studies have been restricted to the foliar aspects of Pilocarpus. However, no anatomical studies analyzing the foliar aspects of Pilocarpus in relation to related genera have been carried out. Therefore, the aim of this study was to identify characters for future taxonomic and phylogenetic studies in Rutaceae, particularly in Pilocarpus, and to discuss the characteristics associated with the simple or compound leaf condition for the group. The petiole and the leaf blade of 14 neotropical Rutaceae species were analyzed, and the following characteristics were observed in all leaves studied: stomata on both surfaces; secretory cavities, including mesophyll type; camptodromous–brochidodromous venation pattern; and free vascular cylinder in the basal region of the petiole. Additional promising characters were identified for future taxonomic and phylogenetic studies in the Rutaceae family, especially for the Pilocarpus genera.