Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
783
result(s) for
"simultaneous localization and mapping (SLAM)"
Sort by:
Semantic SLAM Based on Deep Learning in Endocavity Environment
2022
Traditional endoscopic treatment methods restrict the surgeon’s field of view. New approaches to laparoscopic visualization have emerged due to the advent of robot-assisted surgical techniques. Lumen simultaneous localization and mapping (SLAM) technology can use the image sequence taken by the endoscope to estimate the pose of the endoscope and reconstruct the lumen scene in minimally invasive surgery. This technology gives the surgeon better visual perception and is the basis for the development of surgical navigation systems as well as medical augmented reality. However, the movement of surgical instruments in the internal cavity can interfere with the SLAM algorithm, and the feature points extracted from the surgical instruments may cause errors. Therefore, we propose a modified endocavity SLAM method combined with deep learning semantic segmentation that introduces a convolution neural network based on U-Net architecture with a symmetric encoder–decoder structure in the visual odometry with the goals of solving the binary segmentation problem between surgical instruments and the lumen background and distinguishing dynamic feature points. Its segmentation performance is improved by using pretrained encoders on the network model to obtain more accurate pixel-level instrument segmentation. In this setting, the semantic segmentation is used to reject the feature points on the surgical instruments and reduce the impact caused by dynamic surgical instruments. This can provide more stable and accurate mapping results compared to ordinary SLAM systems.
Journal Article
3D Texture Reconstruction of Abdominal Cavity Based on Monocular Vision SLAM for Minimally Invasive Surgery
2022
The depth information of abdominal tissue surface and the position of laparoscope are very important for accurate surgical navigation in computer-aided surgery. It is difficult to determine the lesion location by empirically matching the laparoscopic visual field with the preoperative image, which is easy to cause intraoperative errors. Aiming at the complex abdominal environment, this paper constructs an improved monocular simultaneous localization and mapping (SLAM) system model, which can more accurately and truly reflect the abdominal cavity structure and spatial relationship. Firstly, in order to enhance the contrast between blood vessels and background, the contrast limited adaptive histogram equalization (CLAHE) algorithm is introduced to preprocess abdominal images. Secondly, combined with AKAZE algorithm, the Oriented FAST and Rotated BRIEF(ORB) algorithm is improved to extract the features of abdominal image, which improves the accuracy of extracted symmetry feature points pair and uses the RANSAC algorithm to quickly eliminate the majority of mis-matched pairs. The medical bag-of-words model is used to replace the traditional bag-of-words model to facilitate the comparison of similarity between abdominal images, which has stronger similarity calculation ability and reduces the matching time between the current abdominal image frame and the historical abdominal image frame. Finally, Poisson surface reconstruction is used to transform the point cloud into a triangular mesh surface, and the abdominal cavity texture image is superimposed on the 3D surface described by the mesh to generate the abdominal cavity inner wall texture. The surface of the abdominal cavity 3D model is smooth and has a strong sense of reality. The experimental results show that the improved SLAM system increases the registration accuracy of feature points and the densification, and the visual effect of dense point cloud reconstruction is more realistic for Hamlyn dataset. The 3D reconstruction technology creates a realistic model to identify the blood vessels, nerves and other tissues in the patient’s focal area, enabling three-dimensional visualization of the focal area, facilitating the surgeon’s observation and diagnosis, and digital simulation of the surgical operation to optimize the surgical plan.
Journal Article
Unsupervised learning to detect loops using deep neural networks for visual SLAM system
2017
This paper is concerned of the loop closure detection problem for visual simultaneous localization and mapping systems. We propose a novel approach based on the stacked denoising auto-encoder (SDA), a multi-layer neural network that autonomously learns an compressed representation from the raw input data in an unsupervised way. Different with the traditional bag-of-words based methods, the deep network has the ability to learn the complex inner structures in image data, while no longer needs to manually design the visual features. Our approach employs the characteristics of the SDA to solve the loop detection problem. The workflow of training the network, utilizing the features and computing the similarity score is presented. The performance of SDA is evaluated by a comparison study with Fab-map 2.0 using data from open datasets and physical robots. The results show that SDA is feasible for detecting loops at a satisfactory precision and can therefore provide an alternative way for visual SLAM systems.
Journal Article
Hybrid Indoor Localization Using IMU Sensors and Smartphone Camera
2019
Smartphone camera or inertial measurement unit (IMU) sensor-based systems can be independently used to provide accurate indoor positioning results. However, the accuracy of an IMU-based localization system depends on the magnitude of sensor errors that are caused by external electromagnetic noise or sensor drifts. Smartphone camera based positioning systems depend on the experimental floor map and the camera poses. The challenge in smartphone camera-based localization is that accuracy depends on the rapidness of changes in the user’s direction. In order to minimize the positioning errors in both the smartphone camera and IMU-based localization systems, we propose hybrid systems that combine both the camera-based and IMU sensor-based approaches for indoor localization. In this paper, an indoor experiment scenario is designed to analyse the performance of the IMU-based localization system, smartphone camera-based localization system and the proposed hybrid indoor localization system. The experiment results demonstrate the effectiveness of the proposed hybrid system and the results show that the proposed hybrid system exhibits significant position accuracy when compared to the IMU and smartphone camera-based localization systems. The performance of the proposed hybrid system is analysed in terms of average localization error and probability distributions of localization errors. The experiment results show that the proposed oriented fast rotated binary robust independent elementary features (BRIEF)-simultaneous localization and mapping (ORB-SLAM) with the IMU sensor hybrid system shows a mean localization error of 0.1398 m and the proposed simultaneous localization and mapping by fusion of keypoints and squared planar markers (UcoSLAM) with IMU sensor-based hybrid system has a 0.0690 m mean localization error and are compared with the individual localization systems in terms of mean error, maximum error, minimum error and standard deviation of error.
Journal Article
Underwater SLAM Meets Deep Learning: Challenges, Multi-Sensor Integration, and Future Directions
2025
The underwater domain presents unique challenges and opportunities for scientific exploration, resource extraction, and environmental monitoring. Autonomous underwater vehicles (AUVs) rely on simultaneous localization and mapping (SLAM) for real-time navigation and mapping in these complex environments. However, traditional SLAM techniques face significant obstacles, including poor visibility, dynamic lighting conditions, sensor noise, and water-induced distortions, all of which degrade the accuracy and robustness of underwater navigation systems. Recent advances in deep learning (DL) have introduced powerful solutions to overcome these challenges. DL techniques enhance underwater SLAM by improving feature extraction, image denoising, distortion correction, and sensor fusion. This survey provides a comprehensive analysis of the latest developments in DL-enhanced SLAM for underwater applications, categorizing approaches based on their methodologies, sensor dependencies, and integration with deep learning models. We critically evaluate the benefits and limitations of existing techniques, highlighting key innovations and unresolved challenges. In addition, we introduce a novel classification framework for underwater SLAM based on its integration with underwater wireless sensor networks (UWSNs). UWSNs offer a collaborative framework that enhances localization, mapping, and real-time data sharing among AUVs by leveraging acoustic communication and distributed sensing. Our proposed taxonomy provides new insights into how communication-aware SLAM methodologies can improve navigation accuracy and operational efficiency in underwater environments. Furthermore, we discuss emerging research trends, including the use of transformer-based architectures, multi-modal sensor fusion, lightweight neural networks for real-time deployment, and self-supervised learning techniques. By identifying gaps in current research and outlining potential directions for future work, this survey serves as a valuable reference for researchers and engineers striving to develop robust and adaptive underwater SLAM solutions. Our findings aim to inspire further advancements in autonomous underwater exploration, supporting critical applications in marine science, deep-sea resource management, and environmental conservation.
Journal Article
Research on 3D LiDAR outdoor SLAM algorithm based on LiDAR/IMU tight coupling
2025
Aiming at the problems of easy loss of GPS positioning signals in outdoor environments and inaccurate map construction and position drift of traditional SLAM algorithms in outdoor scenes, this paper proposes a 3D LiDAR and inertial guidance tightly coupled SLAM algorithm. Firstly, inertial measurement unit (IMU) forward propagation is used to predict the current position, then backward propagation is used to compensate the motion distortion in the LiDAR data, and the point cloud alignment residuals are constructed based on the GICP algorithm, and then the iterative error state Kalman filter (IESKF) algorithm is utilized to complete the fusion of the point cloud residuals and the a priori position obtained from the forward propagation of the IMU to complete the state updating, and then the front-end fusion odometer is constructed. Next, a sparse voxel near-neighbor structure, iVox-based method, is employed to select key frames and construct local maps, leveraging spatial information during frame-map matching. This approach reduces the computational time required for point cloud alignment. Finally, the proposed algorithm is validated in real-world scenarios and on the outdoor open-source dataset KITTI. It is compared against mainstream algorithms, including FAST-LIO2 and LIO-SAM. The results demonstrate that the proposed approach achieves lower cumulative error, higher localization accuracy, and improved visualization with greater robustness in outdoor environments.
Journal Article
NeuroSLAM: a brain-inspired SLAM system for 3D environments
by
Yu, Fangwen
,
Hu, Youjian
,
Shang, Jianga
in
Algorithms
,
Cell culture
,
Computational neuroscience
2019
Roboticists have long drawn inspiration from nature to develop navigation and simultaneous localization and mapping (SLAM) systems such as RatSLAM. Animals such as birds and bats possess superlative navigation capabilities, robustly navigating over large, three-dimensional environments, leveraging an internal neural representation of space combined with external sensory cues and self-motion cues. This paper presents a novel neuro-inspired 4DoF (degrees of freedom) SLAM system named NeuroSLAM, based upon computational models of 3D grid cells and multilayered head direction cells, integrated with a vision system that provides external visual cues and self-motion cues. NeuroSLAM’s neural network activity drives the creation of a multilayered graphical experience map in a real time, enabling relocalization and loop closure through sequences of familiar local visual cues. A multilayered experience map relaxation algorithm is used to correct cumulative errors in path integration after loop closure. Using both synthetic and real-world datasets comprising complex, multilayered indoor and outdoor environments, we demonstrate NeuroSLAM consistently producing topologically correct three-dimensional maps.
Journal Article
Visual SLAM for Dynamic Environments Based on Object Detection and Optical Flow for Dynamic Object Removal
by
Theodorou, Charalambos
,
Velisavljevic, Vladan
,
Dyo, Vladimir
in
Accuracy
,
Algorithms
,
Cameras
2022
In dynamic indoor environments and for a Visual Simultaneous Localization and Mapping (vSLAM) system to operate, moving objects should be considered because they could affect the system’s visual odometer stability and its position estimation accuracy. vSLAM can use feature points or a sequence of images, as it is the only source of input that can perform localization while simultaneously creating a map of the environment. A vSLAM system based on ORB-SLAM3 and on YOLOR was proposed in this paper. The newly proposed system in combination with an object detection model (YOLOX) applied on extracted feature points is capable of achieving 2–4% better accuracy compared to VPS-SLAM and DS-SLAM. Static feature points such as signs and benches were used to calculate the camera position, and dynamic moving objects were eliminated by using the tracking thread. A specific custom personal dataset that includes indoor and outdoor RGB-D pictures of train stations, including dynamic objects and high density of people, ground truth data, sequence data, and video recordings of the train stations and X, Y, Z data was used to validate and evaluate the proposed method. The results show that ORB-SLAM3 with YOLOR as object detection achieves 89.54% of accuracy in dynamic indoor environments compared to previous systems such as VPS-SLAM.
Journal Article
Multi-Sensor Fusion Simultaneous Localization Mapping Based on Deep Reinforcement Learning and Multi-Model Adaptive Estimation
2023
In this study, we designed a multi-sensor fusion technique based on deep reinforcement learning (DRL) mechanisms and multi-model adaptive estimation (MMAE) for simultaneous localization and mapping (SLAM). The LiDAR-based point-to-line iterative closest point (PLICP) and RGB-D camera-based ORBSLAM2 methods were utilized to estimate the localization of mobile robots. The residual value anomaly detection was combined with the Proximal Policy Optimization (PPO)-based DRL model to accomplish the optimal adjustment of weights among different localization algorithms. Two kinds of indoor simulation environments were established by using the Gazebo simulator to validate the multi-model adaptive estimation localization performance, which is used in this paper. The experimental results of the proposed method in this study confirmed that it can effectively fuse the localization information from multiple sensors and enable mobile robots to obtain higher localization accuracy than the traditional PLICP and ORBSLAM2. It was also found that the proposed method increases the localization stability of mobile robots in complex environments.
Journal Article
Robust Visual-Inertial Odometry with Learning-Based Line Features in a Illumination-Changing Environment
2025
Visual-Inertial Odometry (VIO) systems often suffer from degraded performance in environments with low texture. Although some previous works have combined line features with point features to mitigate this problem, the line features still degrade under more challenging conditions, such as varying illumination. To tackle this, we propose DeepLine-VIO, a robust VIO framework that integrates learned line features extracted via an attraction-field-based deep network. These features are geometrically consistent and illumination-invariant, offering improved visual robustness in challenging conditions. Our system tightly couples these learned line features with point observations and inertial data within a sliding-window optimization framework. We further introduce a geometry-aware filtering and parameterization strategy to ensure the reliability of extracted line segments. Extensive experiments on the EuRoC dataset under synthetic illumination perturbations show that DeepLine-VIO consistently outperforms existing point- and line-based methods. On the most challenging sequences under illumination-changing conditions, our approach reduces Absolute Trajectory Error (ATE) by up to 15.87% and improves Relative Pose Error (RPE) in translation by up to 58.45% compared to PL-VINS. These results highlight the robustness and accuracy of DeepLine-VIO in visually degraded environments.
Journal Article