Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
97 result(s) for "single-molecule real-time sequencing"
Sort by:
High-resolution community profiling of arbuscular mycorrhizal fungi
Community analyses of arbuscular mycorrhizal fungi (AMF) using ribosomal small subunit (SSU) or internal transcribed spacer (ITS) DNA sequences often suffer from low resolution or coverage. We developed a novel sequencing based approach for a highly resolving and specific profiling of AMF communities. We took advantage of previously established AMF-specific PCR primers that amplify a c. 1.5-kb long fragment covering parts of SSU, ITS and parts of the large ribosomal subunit (LSU), and we sequenced the resulting amplicons with single molecule real-time (SMRT) sequencing. The method was applicable to soil and root samples, detected all major AMF families and successfully discriminated closely related AMF species, which would not be discernible using SSU sequences. In inoculation tests we could trace the introduced AMF inoculum at the molecular level. One of the introduced strains almost replaced the local strain(s), revealing that AMF inoculation can have a profound impact on the native community. The methodology presented offers researchers a powerful new tool for AMF community analysis because it unifies improved specificity and enhanced resolution, whereas the drawback of medium sequencing throughput appears of lesser importance for low-diversity groups such as AMF.
Third‐generation sequencing identified two rare α‐chain variants leading to hemoglobin variants in Chinese population
Background Rare and novel variants of HBA1/2 and HBB genes resulting in thalassemia and hemoglobin (Hb) variants have been increasingly identified. Our goal was to identify two rare Hb variants in Chinese population using third‐generation sequencing (TGS) technology. Methods Enrolled in this study were two Chinese families from Fujian Province. Hematological screening was conducted using routine blood analysis and Hb capillary electrophoresis analysis. Routine thalassemia gene testing was carried out to detect the common mutations of α‐ and β‐thalassemia in Chinese population. Rare or novel α‐ and β‐globin gene variants were further investigated by TGS. Results The proband of family 1 was a female aged 32, with decreased levels of mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), Hb A2, and abnormal Hb bands in zone 5 and zone 12. No common thalassemia mutations were detected by routine thalassemia analysis, while a rare α‐globin gene variant Hb Jilin [α139(HC1)Lys>Gln (AAA>CAA); HBA2:c.418A>C] was identified by TGS. Subsequent pedigree analysis showed that the proband's son also harbored the Hb Jilin variant with slightly low levels of MCH, Hb A2, and abnormal Hb bands. The proband of family 2 was a male at 41 years of age, exhibiting normal MCV and MCH, but a low level of Hb A2 and an abnormal Hb band in zone 12 without any common α‐ and β‐thalassemia mutations. The subsequent TGS detection demonstrated a rare Hb Beijing [α16(A14)Lys>Asn (AAG>AAT); HBA2:c.51G>T] variant in HBA2 gene. Conclusion In this study, for the first time, we present two rare Hb variants of Hb Jilin and Hb Beijing in Fujian Province, Southeast China, using TGS technology. Two rare α‐chain variants that causing hemoglobinopathy were first identified in Fujian Province, Southeast China, using third‐generation sequencing technology. Abnormal hemoglobin (Hb) bands in zone 12 may be associated with Hb Beijing and Hb Jilin variants.
Dynamic Interplay between Structural Variations and 3D Genome Organization in Pancreatic Cancer
Structural variations (SVs) are the greatest source of variations in the genome and can lead to oncogenesis. However, the identification and interpretation of SVs in human cancer remain technologically challenging. Here, long‐read sequencing is first employed to depict the signatures of structural variations in carcinogenesis of human pancreatic ductal epithelium. Then widespread reprogramming of the 3D chromatin architecture is revealed by an in situ Hi‐C technique. Integrative analyses indicate that the distribution pattern of SVs among the 3D genome is highly cell‐type specific and the bulk remodeling effects of SVs in the chromatin organization partly depend on intercellular genomic heterogeneity. Meanwhile, contact domains tend to minimize these disrupting effects of SVs within local adjacent genomic regions to maintain overall stability. Notably, complex genomic rearrangements involving two key driver genes CDKN2A and SMAD4 are identified, and their influence on the expression of oncogenes MIR31HG, MYO5B, etc., are further elucidated from both a linear view and 3D perspective. Overall, this work provides a genome‐wide resource and highlights the impact, complexity, and dynamicity of the interplay between structural variations and high‐order chromatin organization, which expands the current understanding of the pathogenesis of SVs in human cancer. This is the first report to study impacts of structural variations (SVs) on 3D genome organization in pancreatic cancer with multiomics strategies integrating long‐read sequencing and Hi‐C techniques. The findings provide a genome‐wide resource and new spatial perspective for comprehensively understanding the pathogenic mechanisms of SVs in pancreatic cancer development, which may contribute to identifying novel prognostic markers and therapeutic targets.
Third-Generation Sequencing: The Spearhead towards the Radical Transformation of Modern Genomics
Although next-generation sequencing (NGS) technology revolutionized sequencing, offering a tremendous sequencing capacity with groundbreaking depth and accuracy, it continues to demonstrate serious limitations. In the early 2010s, the introduction of a novel set of sequencing methodologies, presented by two platforms, Pacific Biosciences (PacBio) and Oxford Nanopore Sequencing (ONT), gave birth to third-generation sequencing (TGS). The innovative long-read technologies turn genome sequencing into an ease-of-handle procedure by greatly reducing the average time of library construction workflows and simplifying the process of de novo genome assembly due to the generation of long reads. Long sequencing reads produced by both TGS methodologies have already facilitated the decipherment of transcriptional profiling since they enable the identification of full-length transcripts without the need for assembly or the use of sophisticated bioinformatics tools. Long-read technologies have also provided new insights into the field of epitranscriptomics, by allowing the direct detection of RNA modifications on native RNA molecules. This review highlights the advantageous features of the newly introduced TGS technologies, discusses their limitations and provides an in-depth comparison regarding their scientific background and available protocols as well as their potential utility in research and clinical applications.
A hybrid de novo genome assembly of the honeybee, Apis mellifera, with chromosome-length scaffolds
Background The ability to generate long sequencing reads and access long-range linkage information is revolutionizing the quality and completeness of genome assemblies. Here we use a hybrid approach that combines data from four genome sequencing and mapping technologies to generate a new genome assembly of the honeybee Apis mellifera . We first generated contigs based on PacBio sequencing libraries, which were then merged with linked-read 10x Chromium data followed by scaffolding using a BioNano optical genome map and a Hi-C chromatin interaction map, complemented by a genetic linkage map. Results Each of the assembly steps reduced the number of gaps and incorporated a substantial amount of additional sequence into scaffolds. The new assembly (Amel_HAv3) is significantly more contiguous and complete than the previous one (Amel_4.5), based mainly on Sanger sequencing reads. N50 of contigs is 120-fold higher (5.381 Mbp compared to 0.053 Mbp) and we anchor > 98% of the sequence to chromosomes. All of the 16 chromosomes are represented as single scaffolds with an average of three sequence gaps per chromosome. The improvements are largely due to the inclusion of repetitive sequence that was unplaced in previous assemblies. In particular, our assembly is highly contiguous across centromeres and telomeres and includes hundreds of AvaI and AluI repeats associated with these features. Conclusions The improved assembly will be of utility for refining gene models, studying genome function, mapping functional genetic variation, identification of structural variants, and comparative genomics.
A single-cell survey of cellular hierarchy in acute myeloid leukemia
Background Acute myeloid leukemia (AML) is a fatal hematopoietic malignancy and has a prognosis that varies with its genetic complexity. However, there has been no appropriate integrative analysis on the hierarchy of different AML subtypes. Methods Using Microwell-seq, a high-throughput single-cell mRNA sequencing platform, we analyzed the cellular hierarchy of bone marrow samples from 40 patients and 3 healthy donors. We also used single-cell single-molecule real-time (SMRT) sequencing to investigate the clonal heterogeneity of AML cells. Results From the integrative analysis of 191727 AML cells, we established a single-cell AML landscape and identified an AML progenitor cell cluster with novel AML markers. Patients with ribosomal protein high progenitor cells had a low remission rate. We deduced two types of AML with diverse clinical outcomes. We traced mitochondrial mutations in the AML landscape by combining Microwell-seq with SMRT sequencing. We propose the existence of a phenotypic “cancer attractor” that might help to define a common phenotype for AML progenitor cells. Finally, we explored the potential drug targets by making comparisons between the AML landscape and the Human Cell Landscape. Conclusions We identified a key AML progenitor cell cluster. A high ribosomal protein gene level indicates the poor prognosis. We deduced two types of AML and explored the potential drug targets. Our results suggest the existence of a cancer attractor.
Exploiting single-molecule transcript sequencing for eukaryotic gene prediction
We develop a method to predict and validate gene models using PacBio single-molecule, real-time (SMRT) cDNA reads. Ninety-eight percent of full-insert SMRT reads span complete open reading frames. Gene model validation using SMRT reads is developed as automated process. Optimized training and prediction settings and mRNA-seq noise reduction of assisting Illumina reads results in increased gene prediction sensitivity and precision. Additionally, we present an improved gene set for sugar beet ( Beta vulgaris ) and the first genome-wide gene set for spinach ( Spinacia oleracea ). The workflow and guidelines are a valuable resource to obtain comprehensive gene sets for newly sequenced genomes of non-model eukaryotes.
Identification of Hb Lepore, Hb anti-Lepore, and α-globin gene triplications by long-read single-molecule real-time sequencing
Abstract Objectives Hemoglobin (Hb) Lepore and Hb anti-Lepore are infrequent fusion gene variants that result from nonhomologous crossovers during meiosis. Conventional molecular testing methods may face challenges in identifying these variants. During Hb analysis using capillary electrophoresis, we encountered 6 cases with unusual Hb variants. Our aim was to identify the alterations in their globin genes. Methods Gap-polymerase chain reaction (PCR), reverse dot-blot assay (RDB), Sanger sequencing, multiplex ligation-dependent probe amplification (MLPA), and long-read single-molecule real-time (SMRT) sequencing were used to confirm the presence of globin gene alterations. Results The routine thalassemia gene test kit using the gap-PCR and RDB techniques did not detect common gene variations. Direct sequencing failed to identify any known or unknown globin gene alterations. The MLPA analysis, however, revealed the possible presence of α-globin gene triplications as well as 2 types of fusion gene alterations. Further analysis using long-read SMRT sequencing accurately identified 3 rare gene variations: αααanti-3.7, Hb Lepore-Boston-Washington, and Hb anti-Lepore P-India. Conclusions Conventional methods may overlook rare thalassemias or Hb variants. Long-read SMRT sequencing has the potential to identify breakpoints in fusion genes, demonstrating that it is a promising technique for detecting rare thalassemias.
Polymorphic Microsatellite Markers for a Wind-Dispersed Tropical Tree Species, Triplaris cumingiana (Polygonaceae)
Premise of the study: Novel microsatellite markers were characterized in the wind-dispersed and dioecious neotropical tree Triplaris cumingiana (Polygonaceae) for use in understanding the ecological processes and genetic impacts of pollen- and seed-mediated gene flow in tropical forests. Methods and Results: Sixty-two microsatellite primer pairs were screened, from which 12 markers showing five or more alleles per locus (range 5–17) were tested on 47 individuals. Observed and expected heterozygosities averaged 0.692 and 0.731, respectively. Polymorphism information content was between 0.417 and 0.874. Linkage disequilibrium was observed in one of the 66 pairwise comparisons between loci. Two loci showed deviation from Hardy–Weinberg equilibrium. An additional 14 markers exhibiting lower polymorphism were characterized on a smaller number of individuals. Conclusions: These microsatellite markers have high levels of polymorphism and reproducibility and will be useful in studying gene flow and population structure in T. cumingiana.
Tolerance to dietary linalool primarily involves co-expression of cytochrome P450s and cuticular proteins in Pagiophloeus tsushimanus (Coleoptera: Curculionidae) larvae using SMRT sequencing and RNA-seq
Background Pagiophloeus tsushimanus (Coleoptera: Curculionidae), an emerging forest pest exclusively infesting camphor trees, has recently caused severe ecological and economic damage in localized areas in China. Its population outbreak depends largely on the capacity to overcome the pressure of terpenoid-derived metabolites (e.g. linalool) from camphor trees. At present, the molecular basis of physiological adaptation of P. tsushimanus to dietary linalool is poorly understood, and there is no available reference genome or transcriptome. Results Herein, we constructed the transcriptome profiling of P. tsushimanus larvae reared on linalool-infused diets using RNA sequencing and single-molecule real-time sequencing. A total of 20,325 high-quality full-length transcripts were identified as a reference transcriptome, of which 14,492 protein-coding transcripts including 130 transcription factors (TFs), and 5561 long non-coding RNAs (lncRNAs) were detected. Also, 30 alternative splicing events and 8049 simple sequence repeats were captured. Gene ontology enrichment of differential expressed transcripts revealed that overall up-regulation of both cytochrome P450s (CYP450s) and cuticular proteins (CPs), was the primary response characteristic against dietary linalool. Other physiological effects possibly caused by linalool exposure, such as increase in Reactive Oxygen Species (ROS) and hormetic stimulation, were compensated by a handful of induced genes encoding antioxidases, heat shock proteins (HSPs), juvenile hormone (JH) epoxide hydrolases, and digestive enzymes. Additionally, based on co-expression networks analysis, a diverse array of hub lncRNAs and TFs co-expressed with CYP450s and CPs were screened as the potential gene regulators. Temporal expression of candidate transcripts determined by quantitative real-time PCR also indicated a cooperative relationship between the inductions of CYP450s and CPs upon exposure to linalool. Conclusions Our present study provides an important transcriptome resource of P. tsushimanus , and lays a valuable foundation for understanding how this specialist pest copes with chemical challenges in its specific host environments.