Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
3,056
result(s) for
"slope environment"
Sort by:
Hydrological regimes in different slope environments and implications on rainfall thresholds triggering shallow landslides
2022
Assessing hazard of rainfall-induced shallow landslides represents a challenge for the risk management of urbanized areas for which the setting up of early warning systems, based on the reconstruction of reliable rainfall thresholds and rainfall monitoring, is a solution more practicable than the delocalization of settlements and infrastructures. Consequently, the reduction in uncertainties affecting the estimation of rainfall thresholds conditions, leading to the triggering of slope instabilities, is a fundament task to be tackled. In such a view, coupled soil hydrological monitoring and physics-based modeling approaches are presented for estimating rainfall thresholds in two different geomorphological environments prone to shallow landsliding. Based on the comparison of results achieved for silty–clayey soils characterizing Oltrepò Pavese area (northern Italy) and ash-fall pyroclastic soils mantling slopes of Sarno Mountains ridge (southern Italy), this research advances the understanding of the slope hydrological response in triggering shallow landslides. Among the principal results is the comprehension that, mainly depending on geological and geomorphological settings, geotechnical and hydrological properties of soil coverings have a fundamental control on the timing and intensity of hydrological processes leading to landslide initiation. Moreover, results obtained show how the characteristics of the soil coverings control the slope hydrological response at different time scales, making the antecedent soil hydrological conditions a not negligible factor for estimating landslide rainfall thresholds. The approaches proposed can be conceived as an adaptable tool to assess hazard to initiation of shallow rainfall-induced landslides and to implement early-warning systems from site-specific to distributed (catchment or larger) scales.
Journal Article
Hydrological control of soil thickness spatial variability on the initiation of rainfall-induced shallow landslides using a three-dimensional model
2021
Thickness and stratigraphic settings of soils covering slopes potentially control susceptibility to initiation of rainfall-induced shallow landslides due to their local effect on slope hydrological response. Notwithstanding the relevance of the assessment of hazard to shallow landsliding at a distributed scale by approaches based on a coupled modelling of slope hydrological response and slope stability, the spatial variability of soil thickness and stratigraphic settings are factors poorly considered in the literature. Under these premises, this paper advances the well-known case study of rainfall-induced shallow landslides involving ash-fall pyroclastic soils covering the peri-Vesuvian mountains (Campania, southern Italy). In such a unique geomorphological setting, the soil covering is formed by alternating loose ash-fall pyroclastic deposits and paleosols, with high contrasts in hydraulic conductivity and total thickness decreasing as the slope angle increases, thus leading to the establishment of lateral flow and an increase of pore water pressure in localised sectors of the slope where soil horizon thickness is less. In particular, we investigate the effects, on hillslope hydrological regime and slope stability, of irregular bedrock topography, spatial variability of soil thickness and vertical hydraulic heterogeneity of soil horizons, by using a coupled three-dimensional hydrological and a probabilistic infinite slope stability model. The modelling is applied on a sample mountain catchment, located on Sarno Mountains (Campania, southern Italy), and calibrated using physics-based rainfall thresholds derived from the literature. The results obtained under five simulated constant rainfall intensities (2.5, 5, 10, 20 and 40 mm h−1) show an increase of soil pressure head and major failure probability corresponding to stratigraphic and morphological discontinuities, where a soil thickness reduction occurs. The outcomes obtained from modelling match the hypothesis of the formation of lateral throughflow due to the effect of intense rainfall, which leads to the increase of soil water pressure head and water content, up to values of near-saturation, in narrow zones of the slope, such as those of downslope reduction of total soil thickness and pinching out of soil horizons. The approach proposed can be conceived as a further advance in the comprehension of slope hydrological processes at a detailed scale and their effects on slope stability under given rainfall and antecedent soil hydrological conditions, therefore in predicting the most susceptible areas to initiation of rainfall-induced shallow landslides and the related I-D rainfall thresholds. Results obtained demonstrate the occurrence of a slope hydrological response depending on the spatial variability of soil thickness and leading to focus slope instability in specific slope sectors. The approach proposed is conceived to be potentially exportable to other slope environments for which a spatial modelling of soil thickness would be possible.
Journal Article
Horizontal Refraction Effects of Sound Propagation Within Continental Shelf Slope Environment: Modeling and Theoretical Analysis
2025
Horizontal refraction notably influences propagation characteristics with the variation of the waveguide environment. In this study, the horizontal refraction phenomenon at low frequencies was investigated in a sloping sea region with an incomplete vertical sound speed profile. Using the mode coupling theory, this research explores the relationship between horizontal refraction and energy exchange among modes, examining the impact of environmental conditions on the horizontal refraction angle. Theoretical derivations and numerical simulations reveal the mechanisms by which the source depth and modal order influence the horizontal refraction. The analysis indicates that the horizontal refraction angle increases with the modal order when the real part of the horizontal wavenumber km at the source position is less than the wavenumber ks. In this situation, the horizontal refraction angle corresponding to the same modal order does not vary with the source depth. However, if the real part of km is larger than ks, then the horizontal refraction angle decreases as the source depth increases. This condition is due to the extremely small eigenfunction value at source depth of the low-order mode, thereby enhancing the mode coupling effect. The mode coupling is intimately associated with the mode excited by the source. Therefore, the source depth exerts a substantial influence on the horizontal refraction. Under these conditions, the modal order has a negligible effect on the horizontal refraction angle.
Journal Article
Multi-source 3D point clouds fusion for potential rock mass hazard evaluation in high-steep rock slopes
by
Adriano, Bruno
,
Shibasaki, Ryosuke
,
Liu, Changqing
in
Aerial photography
,
Geological hazards
,
Hazard assessment
2025
Accurate characterization and evaluation of hazardous rockmass sources prove essential for rockfall risk mitigation. Structural properties of rock masses play a decisive role in evaluating these risks. This study presents an integrated approach that combines Terrestrial Laser Scanning (TLS) and Unmanned Aerial Vehicle (UAV) photogrammetry to address data limitations in complex terrain. The practical validation was carried out on the basis of a case study on a high and steep rock slope. The results demonstrate that the fusion of TLS-UAV multi-source data enhances spatial coverage and point cloud density by 19%, enabling comprehensive slope modeling and improving multi-angle structural characterization of target rock masses. An approach integrating multiple algorithms enables the automatic identification of rock joints from multi-source 3D point clouds, achieving high recognition accuracy. And the key geometric and mechanical parameters were extracted and analyzed to quantify joint properties. Furthermore, a novel rock hazard index (RHI) is proposed, which takes into account joint geometric features, joint mechanical features, and slope quality grade to assess risk levels across slope domains. The proposed framework provides an efficient solution for joint-controlled hazardous rockmass assessment, offering theoretical insights and practical applications for infrastructure-related geohazard prevention. This study contributes to enhancing risk assessment methodologies for high and steep slope environments.
Journal Article
Carboniferous (upper Serpukhovian–Bashkirian) fenestrate bryozoans from the Pampa de Tepuel Formation, central-western Patagonia, Argentina
by
Carrera, Marcelo Gabriel
,
Taboada, César Augusto
,
Pagani, María Alejandra
in
Argentina
,
Bashkirian
,
Biogeography
2025
Despite being a conspicuous group in many fossil-bearing beds from the Tepuel–Genoa Basin the knowledge of bryozoans from Patagonia is scarce and outdated. The majority of bryozoan records are known from faunal components of the Lanipustula patagoniensis Biozone (Carboniferous, upper Serpukhovian–Moscovian), in lower to middle levels of the Pampa de Tepuel Formation, Tepuel Group. For the present contribution, we conducted a taxonomic study on bryozoan samples from the lower third of the Pampa de Tepuel Formation at the type section, Sierra de Tepuel, central-western Patagonia, Argentina. We found Paraptylopora gondwanica n. sp. along with species of Penniretepora, Polyporella, Septatopora, Levifenestella Rectifenestella, Spinofenestella, and others still under study. Most studied fenestrate species are restricted to central-western Patagonia, indicating a degree of biogeographical isolation, while a few imply faunal migration between the western and eastern margins of southern Gondwana during the Late Paleozoic Ice Age. The bryozoan growth habits association and accompanying fauna suggests a mid-shelf to upper-slope environment characterized by deep, low-turbidity euhaline waters and a soft to firm substrate. C.A. Taboada and collaborators analyzed the bryozoan fauna from several rock samples of Carboniferous age in central-western Patagonia. This region was situated in higher latitudes and colder conditions in the context of the Late Paleozoic Ice Age (LPIA). The authors described and figured 12 species of fenestrate bryozoans. Furthermore, faunal affinities were found to other regions of the world, revealing three fenestrate species in common with eastern Australia and one in common with central-western Argentina during the LPIA. Despite its affinities, the bryozoan fauna of central-western Patagonia demonstrates a high level of endemism within species that suggests some degree of biogeographical isolation during the Carboniferous. Moreover, the authors used colony growth habits and autoecology of bryozoans and associated fauna, supplemented with available sedimentological data, to interpret some ancient paleoenvironmental conditions such as turbidity, relative water depth, and sedimentation rate, among others.
Journal Article
Pyrite Concretions in the Lower Cambrian Niutitang Formation, South China: Response to Hydrothermal Activity
2023
The Early Cambrian Niutitang Formation is characterized by wide distribution of black shales on Yangtze Block, South China. Here we have reported the pyrite concretions in the bottom of the Niutitang Formation deposited in the slope-basin environment of Yangtze Block. The pyrite concretion was mainly composed of pyrite associated with hydrothermal minerals (barite, hyalophane, tetrahedrite), followed by quartz and organic matter. Trace elements Mo and U displayed significant enrichment (enrichment factors > 10), indicating the euxinic bottom water condition. Cu, Ni, and excess Ba concentrations were relatively high, denoting high primary productivity.
In-situ
sulfur isotope compositions of pyrite concretions δ
34
S
py
) showed little variations (13.2‰–19.4‰) and small fractionations compared to coeval seawater δ
34
Sso
4
. Petrological and geochemical analyses indicated the pyrite concretions were formed in the sediment-water interface during the early diagenesis, with H
2
S diffusing from the euxinic water, and influenced by hydrothermal activity leading to the coexistence of barite, hyalophane, and tetrahedrite. These results imply euxinic bottom water featured by high primary productivity and increasing riverine flux of sulfate from chemical weathering during the Early Cambrian.
Journal Article
Re-Evaluation of the Ionian Basin Evolution during the Late Cretaceous to Eocene (Aetoloakarnania Area, Western Greece)
by
Zygouri, Vasiliki
,
Zelilidis, Avraam
,
Maravelis, Angelos G.
in
Aetoloakarnania area
,
Allochthonous deposits
,
Basins (Geology)
2022
Field investigation, Microfacies analysis, and biostratigraphy have been carried out in the central parts of the Ionian Basin (Aetoloakarnania area, Western Greece) in order to decipher the depositional environments that developed during the accumulation of the Upper Cretaceous to Eocene carbonate succession. Three different Standard Microfacies types (SMF) have been observed, corresponding to two different depositional environments (Facies Zones or FZ) of a platform progradation. The three SMF types which occur in the study area during the Upper Cretaceous to Eocene are: 1. SMF 3 that includes mudstone/wackestone with planktic foraminifera and radiolaria, corresponding to toe-of-slope (FZ: 3), 2. SMF 4, which can be classified as polymict clast-supported microbreccia, indicating a toe-of-slope-slope environment (FZ: 4) and 3. SMF 5 which is characterized by allochthonous bioclastic breccia and components deriving from adjacent platforms and which reflects a slope environment. Microfacies analysis provided evidence of a change in the origin of sedimentary components and biota showing the transition from toe-of-slope to slope, as well as a change in organism distribution.
Journal Article
Microfacies and Depositional Conditions of Jurassic to Eocene Carbonates: Implication on Ionian Basin Evolution
by
Zelilidis, Avraam
,
Bourli, Nicolina
,
Iliopoulos, George
in
Araxos peninsula
,
basin evolution
,
Biostratigraphy
2021
In order to decipher the paleo-depositional environments, during the Late Jurassic to Early Eocene syn-rift stage, at the margins of the Ionian basin, two different areas with exposed long sequences have been selected, Kastos Island (external margin) and Araxos peninsula (internal margin), and were examined by means of microfacies analysis and biostratigraphy. On Kastos Island, based on lithological and sedimentological features, the following depositional environments have been recognized: an open marine/restricted environment prevailed during the Early Jurassic (“Pantokrator” limestones), changing upwards into deep-sea and slope environments during the Late Jurassic and Early Cretaceous (Vigla limestones). The Upper Cretaceous (Senonian limestones) is characterized by a slope environment, whereas during the Paleogene, deep-sea and toe of slope conditions prevailed. In Araxos peninsula, Lower Cretaceous deposits (“Vigla” limestones) were accumulated in a deep-sea environment; Upper Cretaceous ones (Senonian limestones) were deposited in slope or toe of slope conditions. Paleocene limestones correspond to a deep-sea environment. In Araxos peninsula, changes occurred during the Cretaceous, whereas on Kastos Island, they occurred during the Paleocene/Eocene, related to different stages of tectonic activity in the Ionian basin from east to west.
Journal Article
Paleoenvironmental Significance of Claystone in the Middle Ordovician Miboshan Formation of Ordos Basin, China: Evidence from Trace Elements
2023
The Miboshan Formation in the Middle Ordovician plays a crucial role in the sedimentary evolution of the western margin of the Ordos Basin as it represents the transition from a carbonate platform to a deep-water slope-basin environment. This study focuses on the paleoenvironment of claystone in the Middle Ordovician Miboshan Formation, located in the Ningxia Hui Autonomous Region of the Ordos Basin. The study aims to analyze the influence of sea level and salinity on rare earth elements, investigate terrigenous input and redox conditions through trace element analysis, and exemplify the coupling relationship between depositional and tectonic environments. The Miboshan Formation profile consists of thick- to thin-bedded limestones, mainly composed of lenticular calcirudite with erosion surfaces and horizontal laminae. Grayish black claystone have deformation structures and graptolite fossils. Based on the total number of rare earth elements and the trace element indexes, the seawater properties, redox degree, and terrigenous input are located in two data sets in different parts of the profile (i.e., sample 6-1 to 6-5: Concentrated in lower part, and samples 6-6 to 6-8: Concentrated in upper part), implying that they were deposited at different subaqueous uplifts. Negative Ce anomalies, La/Ce, V/Cr, and Fe3+/Fe2+ ratios indicate an anoxic condition with stratified redox structure, whereas characteristic LaN/NdN, Y/Ho, and Sr/Ba suggest deep-water affected by fresh water. The ∑REEs and Th/U ratios indicated that the study area was mainly deposited from terrigenous materials in the stable tectonic area. According to the ages of deposition, lithologic analyses, and chemical parameters, the Miboshan Formation is related to the deep water environment in a ponded basin influenced by subaqueous uplift resulting from plate subduction in an active continental margin. This study provides valuable insights into paleoenvironment and paleotectonic environments of the Miboshan Formation in the Middle Ordovician.
Journal Article
Towards unlocking the trophic roles of rarely encountered squid: Opportunistic samples of Taningia danae and a Chiroteuthis aff. veranii reveal that the Southern Ocean top predators are nutrient links connecting deep-sea and shelf-slope environments
by
Martin, Belinda
,
Doane, Michael P.
,
Henkens, Jessica
in
Calorimetry
,
Cephalopoda
,
Chiroteuthis
2023
Deep-sea squids are presumably vital components of largely undescribed marine ecosystems, yet limited access to specimens has hampered efforts to detail their ecological roles as predators and preys. Biochemical techniques such as stable isotope analyses, fatty acid analyses, and bomb calorimetry are increasingly recognized for their ability to infer trophic ecology and dietary information from small quantities of tissue. This study used five opportunistically collected Taningia danae specimens and one Chiroteuthis aff. veranii specimen retrieved from the Great Australian Bight, South Australia, to detail the trophic ecology of these poorly understood squids. Four body tissue types (i.e., arm, buccal mass, mantle, and digestive gland) were assessed for their utility in stable isotope (SI) and fatty acid (FA) analyses, and we found that the arm, buccal mass, and mantle tissues had similar SI and FA profiles, suggesting that they can be used interchangeably when the entire specimen is unavailable. δ 13 C, δ 15 N, and fatty acid data suggests that the T. danae and C . aff. veranii specimens lived in the Southern Ocean and were high-trophic-level predators, feeding on deep-sea fishes and small squids, while also taking advantage of the summer upwelling region of the Great Australian Bight. The fatty acid analysis and bomb calorimetry results indicate that these squids might be important reservoirs of essential FAs (EPA and DHA) for Southern Ocean predators and that the whole-body energy content of T. danae individuals can reach up to 362,250 kJ. Our findings indicate that these squids may be contributing greatly to the transport of nutrients and energy between the Southern Ocean deep-sea and the Great Australian Bight shelf–slope environments. In addition to building our understanding of the trophic ecology of two poorly understood deep-sea squids, these findings also highlight the utility of partial specimens and demonstrate the important ecological information that can be obtained from few samples that may be opportunistically collected.
Journal Article