Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
58 result(s) for "smart spray technology"
Sort by:
Evaluation of smart spray technology for postemergence herbicide application in row middles of plasticulture production
Postemergence herbicides used to control weeds in the space between raised, plastic-covered beds in plasticulture production systems are typically banded, and herbicides are applied to weeds and to where weeds do not occur. To reduce the incidence of off-targeted applications, the University of Florida developed a smart-spray technology for row middles in plasticulture systems. The technology detects weed according to categories and applies herbicides only where the weeds occur. Field experiments were conducted at the Gulf Coast Research and Education Center in Balm, FL, in fall 2021 and spring 2022. The objective was to evaluate the efficacy of postemergence applications of diquat and glyphosate in row middles in jalapeno pepper fields when banded or applied with smart-spray technology. The overall precision of the weed detection model was 0.92 and 0.89 for fall and spring, respectively. The actuation precision achieved was 0.86 and 1 for fall and spring, respectively. No significant differences were observed between banded and targeted applications either with glyphosate or diquat in terms of broadleaf, grass, and nutsedge weed density. No significant pepper damage was observed with either herbicide or application technique. The smart-spray technology reduced herbicide application volume by 26% and 42% in fall and spring, respectively, with no reduction in weed control or pepper yield compared to a banded application. Overall, the smart-spray technology reduced the herbicide volume applied with no reductions in weed control and no significant effects on crop yield. Nomenclature: Diquat; glyphosate; jalapeno pepper; Capsicum annuum L.
A Brief Overview of Electrochromic Materials and Related Devices: A Nanostructured Materials Perspective
Exactly 50 years ago, the first article on electrochromism was published. Today electrochromic materials are highly popular in various devices. Interest in nanostructured electrochromic and nanocomposite organic/inorganic nanostructured electrochromic materials has increased in the last decade. These materials can enhance the electrochemical and electrochromic properties of devices related to them. This article describes electrochromic materials, proposes their classification and systematization for organic inorganic and nanostructured electrochromic materials, identifies their advantages and shortcomings, analyzes current tendencies in the development of nanomaterials used in electrochromic coatings (films) and their practical use in various optical devices for protection from light radiation, in particular, their use as light filters and light modulators for optoelectronic devices, as well as methods for their preparation. The modern technologies of “Smart Windows”, which are based on chromogenic materials and liquid crystals, are analyzed, and their advantages and disadvantages are also given. Various types of chromogenic materials are presented, examples of which include photochromic, thermochromic and gasochromic materials, as well as the main physical effects affecting changes in their optical properties. Additionally, this study describes electrochromic technologies based on WO3 films prepared by different methods, such as electrochemical deposition, magnetron sputtering, spray pyrolysis, sol–gel, etc. An example of an electrochromic “Smart Window” based on WO3 is shown in the article. A modern analysis of electrochromic devices based on nanostructured materials used in various applications is presented. The paper discusses the causes of internal and external size effects in the process of modifying WO3 electrochromic films using nanomaterials, in particular, GO/rGO nanomaterials.
Design and Development of a Smart Variable Rate Sprayer Using Deep Learning
The uniform application (UA) of agrochemicals results in the over-application of harmful chemicals, increases crop input costs, and deteriorates the environment when compared with variable rate application (VA). A smart variable rate sprayer (SVRS) was designed, developed, and tested using deep learning (DL) for VA application of agrochemicals. Real-time testing of the SVRS took place for detecting and spraying and/or skipping lambsquarters weed and early blight infected and healthy potato plants. About 24,000 images were collected from potato fields in Prince Edward Island and New Brunswick under varying sunny, cloudy, and partly cloudy conditions and processed/trained using YOLOv3 and tiny-YOLOv3 models. Due to faster performance, the tiny-YOLOv3 was chosen to deploy in SVRS. A laboratory experiment was designed under factorial arrangements, where the two spraying techniques (UA and VA) and the three weather conditions (cloudy, partly cloudy, and sunny) were the two independent variables with spray volume consumption as a response variable. The experimental treatments had six repetitions in a 2 × 3 factorial design. Results of the two-way ANOVA showed a significant effect of spraying application techniques on volume consumption of spraying liquid (p-value < 0.05). There was no significant effect of weather conditions and interactions between the two independent variables on volume consumption during weeds and simulated diseased plant detection experiments (p-value > 0.05). The SVRS was able to save 42 and 43% spraying liquid during weeds and simulated diseased plant detection experiments, respectively. Water sensitive papers’ analysis showed the applicability of SVRS for VA with >40% savings of spraying liquid by SVRS when compared with UA. Field applications of this technique would reduce the crop input costs and the environmental risks in conditions (weed and disease) like experimental testing.
State-of-the-art electrochromic thin films devices, fabrication techniques and applications: a review
Electrochromic (EC) thin films have received considerable attention due to their potential applications in various fields such as smart windows, electrochromic displays, and energy storage devices. This review highlights various methods used for the fabrication and functionalization of EC films for various applications. Various techniques for EC thin film deposition ranging from solution-processable, low-temperature approaches such as sol-gel, spin coating, dip coating, and spray pyrolysis, to advanced techniques for deposition such as physical vapor deposition, chemical vapor deposition, and sputtering are summarized in this review. In addition, various applications of EC thin films and the outcome of different deposition approaches on the opto-electrochromic properties of EC thin films have been discussed elaborately. This review has the potential to spark the interest of researchers from a broad range of disciplines, including photocatalysis, electrocatalysis, nanotechnology and materials science.
Graphene coated fabrics by ultrasonic spray coating for wearable electronics and smart textiles
The seamless incorporation of electronics in textiles have the potential to enable various applications ranging from sensors for the internet of things to personalised medicine and human-machine interfacing. Graphene electronic textiles are a current focus for the research community due to the exceptional electrical and optical properties combined with the high flexibility of this material, which makes it the most effective strategy to achieve ultimate mechanical robustness of electronic devices for textile integrated electronics. An efficient way to create electronic textiles is to fabricate devices directly on the fabric. This can be done by coating the textile fabric with graphene to make it conductive. Here we discuss successful and efficient methods for coating graphene nanoplatelets on textile substrates of nylon, polyester and meta-aramid using ultrasonic spray coating technique. These coatings are characterised by scanning electron microscopy, contact angle and electrical conductivity measurements in order to identify the optimal textile electrode. Our study provides the foundation for the large-area fabrication of graphene electronic textiles.
MWCNT enabled smart textiles based flexible and wearable sensor for human motion and humidity monitoring
In the study, we present a simple MWCNT enhanced textile based wearable device which can measure the change in human body motion as well as humidity of the environment for practical applications. Multiwalled carbon nanotube modified textile was fabricated by spray layer by layer method. Morphology, structure, thermal and conductive properties of the MWCNT modified textiles were investigated. The resistance of MWCNT network on textile could be controlled in a wide range from 100 MOhm to 2 KOhm by varying the concentration (1 mg/mL to 5 mg/mL) and a number of spray coating of MWCNT. The fabricated MWCNT enhanced textile sensors were attached to various human body parts (such as forehead, cheek, neck, abdomen, wrist, elbow, knee, wrist) and change in resistance pertaining to human body motion was measured. The wrist movement shows a decrease in the sensor resistance and elbow movement shows an increase in the resistance depends upon forward and reverse (due to compression and expansion of MWCNT junction network) bending of MWCNT coated fabric sensor. Further, the smart fabric was applied to monitor a wide range of humidity (RH = 19–93%) at room temperature. The sensor show high response for relative humidity (RH) of 57% with quick response (4 ± 2 s) and recovery times (14 ± 2 s) at room temperature. The change in resistance of the sensor on exposure to humidity could be attributed to the interaction of water molecules with surface (COOH, and OH) functional groups on MWCNT. The present results could be interesting for the development of simple, large scale and low cost textile based wearable sensors for multifunctional sensing applications.
A study on the change of VO2 thin-film coating behavior according to the droplet size using ultrasonic spray
Global environmental regulations have accelerated the research on smart windows that can make efficient use of energy. Vanadium dioxide (VO 2 ) is a material whose crystal structure changes depending on the external environment and can reflect part of the sunlight. We manufactured smart window thin film through solution process using VO 2 nanoink instead of traditional dry process such as CVD and sputtering. VO 2 thin film was manufactured by ultrasonic spray coating onto PEN (polyethylene naphthalate) and the coating behavior of the thin film was studied by controlling the deflector flow rate, which is considered to have the greatest influence on thin-film formation among various process variables. The solvent contained in the droplet is affected by the air from the deflector, and as the deflector flow increases, the droplet size decreases due to the acceleration of solvent evaporation. The behavior of the thin-film formation depends on the fluidity of the droplets remaining on the substrate. If the fluidity of the droplets is high, the leveling effect will form a uniform thin film; otherwise the adjacent droplets may only combine to form a non-uniform thin film. When the deflector flow rate was 6 L/min, it was impossible to form a uniform thin film due to lack of fluidity.
Phone App to Perform Quality Control of Pesticide Spray Applications in Field Crops
It has been recognized for decades that low and inconsistent spray coverages of pesticide applications represent a major challenge to successful and sustainable crop protection. Deployment of water-sensitive spray cards combined with image analysis can provide valuable and quantitative insight into spray coverage. Herein we provide description of a novel and freely available smartphone app, “Smart Spray”, for both iOS and Android smart devices (iOS and Google app stores). More specifically, we provide a theoretical description of spray coverage, and we describe how Smart Spray and similar image-processing software packages can be used as decision support tools and quality control for pesticide spray applications. Performance assessment of the underlying pixel classification algorithm is presented, and we detail practical recommendations on how to use Smart Spray to maximize accuracy and consistency of spray coverage predictions. Smart Spray was developed as part of ongoing efforts to: (1) maximize the performance of pesticide sprays, (2) minimize pest-induced yield loss and to potentially reduce the amount of pesticide used, (2) reduce the risk of target pests developing pesticide resistance, (3) reduce the risk of spray drift, and (4) optimize spray application costs by introducing a quality control.
Smart sprayer for weed control using an object detection algorithm (YOLOv5)
Spraying pesticides is one of the most common procedures that is conducted to control pests. However, excessive use of these chemicals inversely affects the surrounding environments including the soil, plants, animals, and the operator itself. Therefore, researchers have been encouraged to develop robotic sprayers that can apply pesticides at variable rates as needed in the field. In this study, a remotely controlled sprayer with two modes (variable rate and constant rate applications) was developed and evaluated for some spray characteristics and application accuracy metrics when controlling weeds at two travel speeds. The variable rate mode resulted in a high precision, recall, and accuracy in detecting weed and applying herbicide that was 90%, 100%, and 94%, respectively. Moreover, the spray coverage, droplet density, and the deposition on weed using the variable rate mode were 34.16%, 127.64 deposites ∙ cm–2, and 7.67 μl ∙ cm–2, respectively. The result also revealed that the spray coverage, droplet density, and the deposition were less sensitive to the travel speed when adopting the variable rate mode compared to the constant rate mode.
Direct-Write Spray Coating of a Full-Duplex Antenna for E-Textile Applications
Recent advancements in printing technologies have greatly improved the fabrication efficiency of flexible and wearable electronics. Electronic textiles (E-textiles) garner particular interest because of their innate and desirable properties (i.e., conformability, breathability, fabric hand), which make them the ideal platform for creating wireless body area networks (WBANs) for wearable healthcare applications. However, current WBANs are limited in use due to a lack of flexible antennas that can provide effective wireless communication and data transfer. In this work, we detail a novel fabrication process for flexible textile-based multifunctional antennas with enhanced dielectric properties. Our fabrication process relies on direct-write printing of a dielectric ink consisting of ultraviolet (UV)-curable acrylates and urethane as well as 4 wt.% 200 nm barium titanate (BT) nanoparticles to enhance the dielectric properties of the naturally porous textile architecture. By controlling the spray-coating process parameters of BT dielectric ink on knit fabrics, the dielectric constant is enhanced from 1.43 to 1.61, while preserving the flexibility and air permeability of the fabric. The novel combination textile substrate shows great flexibility, as only 2 N is required for a 30 mm deformation. The final textile antenna is multifunctional in the sense that it is capable of operating in a full-duplex mode while presenting a relatively high gain of 9.12 dB at 2.3 GHz and a bandwidth of 79 MHz (2.260–2.339 GHz) for each port. Our proposed manufacturing process shows the potential to simplify the assembly of traditionally complex E-textile systems.