Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
1,456
result(s) for
"smoothened"
Sort by:
Smoothened stimulation by membrane sterols drives Hedgehog pathway activity
2019
Hedgehog signalling is fundamental to embryonic development and postnatal tissue regeneration
1
. Aberrant postnatal Hedgehog signalling leads to several malignancies, including basal cell carcinoma and paediatric medulloblastoma
2
. Hedgehog proteins bind to and inhibit the transmembrane cholesterol transporter Patched-1 (PTCH1), which permits activation of the seven-transmembrane transducer Smoothened (SMO) via a mechanism that is poorly understood. Here we report the crystal structure of active mouse SMO bound to both the agonist SAG21k and to an intracellular binding nanobody that stabilizes a physiologically relevant active state. Analogous to other G protein-coupled receptors, the activation of SMO is associated with subtle motions in the extracellular domain, and larger intracellular changes. In contrast to recent models
3
–
5
, a cholesterol molecule that is critical for SMO activation is bound deep within the seven-transmembrane pocket. We propose that the inactivation of PTCH1 by Hedgehog allows a transmembrane sterol to access this seven-transmembrane site (potentially through a hydrophobic tunnel), which drives the activation of SMO. These results—combined with signalling studies and molecular dynamics simulations—delineate the structural basis for PTCH1–SMO regulation, and suggest a strategy for overcoming clinical resistance to SMO inhibitors.
The crystal structure of active mouse SMO in complex with the SAG21k agonist and a stabilizing intracellular binding nanobody reveals the structural basis of SMO regulation by PTCH1.
Journal Article
Sterols in an intramolecular channel of Smoothened mediate Hedgehog signaling
2020
Smoothened (SMO), a class Frizzled G protein-coupled receptor (class F GPCR), transduces the Hedgehog signal across the cell membrane. Sterols can bind to its extracellular cysteine-rich domain (CRD) and to several sites in the seven transmembrane helices (7-TMs) of SMO. However, the mechanism by which sterols regulate SMO via multiple sites is unknown. Here we determined the structures of SMO–G
i
complexes bound to the synthetic SMO agonist (SAG) and to 24(
S
),25-epoxycholesterol (24(
S
),25-EC). A novel sterol-binding site in the extracellular extension of TM6 was revealed to connect other sites in 7-TMs and CRD, forming an intramolecular sterol channel from the middle side of 7-TMs to CRD. Additional structures of two gain-of-function variants, SMO
D384R
and SMO
G111C/I496C
, showed that blocking the channel at its midpoints allows sterols to occupy the binding sites in 7-TMs, thereby activating SMO. These data indicate that sterol transport through the core of SMO is a major regulator of SMO-mediated signaling.
Cryo-EM structural work shows sterols binding at four adjacent locations within the class F GPCR Smoothened (SMO), where the transmembrane core functions as a sterol tunnel in which occupancy activates SMO for downstream Hedgehog signaling.
Journal Article
Cholesterol access in cellular membranes controls Hedgehog signaling
2020
The Hedgehog (Hh) signaling pathway coordinates cell–cell communication in development and regeneration. Defects in this pathway underlie diseases ranging from birth defects to cancer. Hh signals are transmitted across the plasma membrane by two proteins, Patched 1 (PTCH1) and Smoothened (SMO). PTCH1, a transporter-like tumor-suppressor protein, binds to Hh ligands, but SMO, a G-protein-coupled-receptor family oncoprotein, transmits the Hh signal across the membrane. Recent structural, biochemical and cell-biological studies have converged at the surprising model that a specific pool of plasma membrane cholesterol, termed accessible cholesterol, functions as a second messenger that conveys the signal between PTCH1 and SMO. Beyond solving a central puzzle in Hh signaling, these studies are revealing new principles in membrane biology: how proteins respond to and remodel cholesterol accessibility in membranes and how the cholesterol composition of organelle membranes is used to regulate protein function.
The Hedgehog (Hh) receptor PTCH1 uses its transporter-like function to inhibit the GPCR SMO by limiting the pool of accessible membrane cholesterol. Cholesterol acts as a ligand for SMO to activate downstream signaling.
Journal Article
Patched 1 reduces the accessibility of cholesterol in the outer leaflet of membranes
by
Kinnebrew, Maia
,
Radhakrishnan, Arun
,
Saheki, Yasunori
in
Animals
,
Cell Biology
,
Cell Membrane - metabolism
2021
A long-standing mystery in vertebrate Hedgehog signaling is how Patched 1 (PTCH1), the receptor for Hedgehog ligands, inhibits the activity of Smoothened, the protein that transmits the signal across the membrane. We previously proposed (Kinnebrew et al., 2019) that PTCH1 inhibits Smoothened by depleting accessible cholesterol from the ciliary membrane. Using a new imaging-based assay to directly measure the transport activity of PTCH1, we find that PTCH1 depletes accessible cholesterol from the outer leaflet of the plasma membrane. This transport activity is terminated by binding of Hedgehog ligands to PTCH1 or by dissipation of the transmembrane potassium gradient. These results point to the unexpected model that PTCH1 moves cholesterol from the outer to the inner leaflet of the membrane in exchange for potassium ion export in the opposite direction. Our study provides a plausible solution for how PTCH1 inhibits SMO by changing the organization of cholesterol in membranes and establishes a general framework for studying how proteins change cholesterol accessibility to regulate membrane-dependent processes in cells.
Journal Article
Crystal structure of a multi-domain human smoothened receptor in complex with a super stabilizing ligand
2017
The Smoothened receptor (SMO) belongs to the Class Frizzled of the G protein-coupled receptor (GPCR) superfamily, constituting a key component of the Hedgehog signalling pathway. Here we report the crystal structure of the multi-domain human SMO, bound and stabilized by a designed tool ligand TC114, using an X-ray free-electron laser source at 2.9 Å. The structure reveals a precise arrangement of three distinct domains: a seven-transmembrane helices domain (TMD), a hinge domain (HD) and an intact extracellular cysteine-rich domain (CRD). This architecture enables allosteric interactions between the domains that are important for ligand recognition and receptor activation. By combining the structural data, molecular dynamics simulation, and hydrogen-deuterium-exchange analysis, we demonstrate that transmembrane helix VI, extracellular loop 3 and the HD play a central role in transmitting the signal employing a unique GPCR activation mechanism, distinct from other multi-domain GPCRs.
Smoothened receptors (SMO) play a key role in the Hedgehog signalling pathway. Here the authors present the structure of a multi-domain human SMO with a rationally designed stabilizing ligand bound in the transmembrane domain of the receptor, and propose a model for SMO activation.
Journal Article
The Role of Smoothened in Cancer
by
Leu, Chuen-Miin
,
Chang, Chiung-Fang
,
Jeng, Kuo-Shyang
in
Animals
,
Antineoplastic Agents - pharmacology
,
Breast Neoplasms - drug therapy
2020
Smoothened (SMO) belongs to the Hedgehog (HH) signaling pathway, which regulates cell growth, migration, invasion and stem cells in cancer. The HH signaling pathway includes both canonical and noncanonical pathways. The canonical HH pathway functions through major HH molecules such as HH ligands, PTCH, SMO and GLI, whereas the noncanonical HH pathway involves the activation of SMO or GLI through other pathways. The role of SMO has been discussed in different types of cancer, including breast, liver, pancreatic and colon cancers. SMO expression correlates with tumor size, invasiveness, metastasis and recurrence. In addition, SMO inhibitors can suppress cancer formation, reduce the proliferation of cancer cells, trigger apoptosis and suppress cancer stem cell activity. A better understanding of the role of SMO in cancer could contribute to the development of novel therapeutic approaches.
Journal Article
Residue 6.43 defines receptor function in class F GPCRs
2021
The class Frizzled of G protein-coupled receptors (GPCRs), consisting of ten Frizzled (FZD
1-10
) subtypes and Smoothened (SMO), remains one of the most enigmatic GPCR families. While SMO relies on cholesterol binding to the 7TM core of the receptor to activate downstream signaling, underlying details of receptor activation remain obscure for FZDs. Here, we aimed to investigate the activation mechanisms of class F receptors utilizing a computational biology approach and mutational analysis of receptor function in combination with ligand binding and downstream signaling assays in living cells. Our results indicate that FZDs differ substantially from SMO in receptor activation-associated conformational changes. SMO manifests a preference for a straight TM6 in both ligand binding and functional readouts. Similar to the majority of GPCRs, FZDs present with a kinked TM6 upon activation owing to the presence of residue P
6.43
. Functional comparison of FZD and FZD P
6.43
F mutants in different assay formats monitoring ligand binding, G protein activation, DVL2 recruitment and TOPflash activity, however, underlines further the functional diversity among FZDs and not only between FZDs and SMO.
The class Frizzled of G protein-coupled receptors (GPCRs) consist of ten Frizzled (FZD
1-10
) subtypes and Smoothened (SMO). Here the Schulte laboratory demonstrates that FZDs differ substantially from SMO in receptor activation-associated conformational changes, while SMO manifests a preference for a straight TM6, the TM6 of FZDs is kinked upon activation.
Journal Article
Smoothened transduces Hedgehog signals via activity-dependent sequestration of PKA catalytic subunits
by
Zhu, Ju-Fen
,
Walker, Madison F.
,
Happ, John T.
in
Adenosine triphosphate
,
Adenylate cyclase
,
Animals
2021
The Hedgehog (Hh) pathway is essential for organ development, homeostasis, and regeneration. Dysfunction of this cascade drives several cancers. To control expression of pathway target genes, the G protein–coupled receptor (GPCR) Smoothened (SMO) activates glioma-associated (GLI) transcription factors via an unknown mechanism. Here, we show that, rather than conforming to traditional GPCR signaling paradigms, SMO activates GLI by binding and sequestering protein kinase A (PKA) catalytic subunits at the membrane. This sequestration, triggered by GPCR kinase (GRK)-mediated phosphorylation of SMO intracellular domains, prevents PKA from phosphorylating soluble substrates, releasing GLI from PKA-mediated inhibition. Our work provides a mechanism directly linking Hh signal transduction at the membrane to GLI transcription in the nucleus. This process is more fundamentally similar between species than prevailing hypotheses suggest. The mechanism described here may apply broadly to other GPCR- and PKA-containing cascades in diverse areas of biology.
Journal Article
Systemic Pharmacological Smoothened Inhibition Reduces Lung T-Cell Infiltration and Ameliorates Th2 Inflammation in a Mouse Model of Allergic Airway Disease
by
Lau, Ching-In
,
Papaioannou, Eleftheria
,
Chawda, Mira M.
in
airway inflammation
,
Allergic diseases
,
Animal models
2021
Allergic asthma is a common inflammatory airway disease in which Th2 immune response and inflammation are thought to be triggered by inhalation of environmental allergens. Many studies using mouse models and human tissues and genome-wide association have indicated that Sonic Hedgehog (Shh) and the Hedgehog (Hh) signaling pathway are involved in allergic asthma and that Shh is upregulated in the lung on disease induction. We used a papain-induced mouse model of allergic airway inflammation to investigate the impact of systemic pharmacological inhibition of the Hh signal transduction molecule smoothened on allergic airway disease induction and severity. Smoothened-inhibitor treatment reduced the induction of Shh, IL-4, and IL-13 in the lung and decreased serum IgE, as well as the expression of Smo , Il4 , Il13 , and the mucin gene Muc5ac in lung tissue. Smoothened inhibitor treatment reduced cellular infiltration of eosinophils, mast cells, basophils, and CD4+ T-cells to the lung, and eosinophils and CD4+ T-cells in the bronchoalveolar lavage. In the mediastinal lymph nodes, smoothened inhibitor treatment reduced the number of CD4+ T-cells, and the cell surface expression of Th2 markers ST2 and IL-4rα and expression of Th2 cytokines. Thus, overall pharmacological smoothened inhibition attenuated T-cell infiltration to the lung and Th2 function and reduced disease severity and inflammation in the airway.
Journal Article
Endogenous B-ring oxysterols inhibit the Hedgehog component Smoothened in a manner distinct from cyclopamine or side-chain oxysterols
by
Beachy, Philip A.
,
Porter, Ned A.
,
Xu, Libin
in
Algae
,
Animals
,
beta-Cyclodextrins - pharmacology
2016
Cellular lipids are speculated to act as key intermediates in Hedgehog signal transduction, but their precise identity and function remain enigmatic. In an effort to identify such lipids, we pursued a Hedgehog pathway inhibitory activity that is particularly abundant in flagellar lipids of Chlamydomonas reinhardtii, resulting in the purification and identification of ergosterol endoperoxide, a B-ring oxysterol. A mammalian analog of ergosterol, 7-dehydrocholesterol (7-DHC), accumulates in Smith–Lemli–Opitz syndrome, a human genetic disease that phenocopies deficient Hedgehog signaling and is caused by genetic loss of 7-DHC reductase. We found that depleting endogenous 7-DHC with methyl-β-cyclodextrin treatment enhances Hedgehog activation by a pathway agonist. Conversely, exogenous addition of 3β,5α-dihydroxycholest-7-en-6-one, a naturally occurring B-ring oxysterol derived from 7-DHC that also accumulates in Smith–Lemli–Opitz syndrome, blocked Hedgehog signaling by inhibiting activation of the essential transduction component Smoothened, through a mechanism distinct from Smoothened modulation by other lipids.
Journal Article