Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
530
result(s) for
"smos"
Sort by:
SMOS-IC: An Alternative SMOS Soil Moisture and Vegetation Optical Depth Product
2017
The main goal of the Soil Moisture and Ocean Salinity (SMOS) mission over land surfaces is the production of global maps of soil moisture (SM) and vegetation optical depth (τ) based on multi-angular brightness temperature (TB) measurements at L-band. The operational SMOS Level 2 and Level 3 soil moisture algorithms account for different surface effects, such as vegetation opacity and soil roughness at 4 km resolution, in order to produce global retrievals of SM and τ. In this study, we present an alternative SMOS product that was developed by INRA (Institut National de la Recherche Agronomique) and CESBIO (Centre d’Etudes Spatiales de la BIOsphère). One of the main goals of this SMOS-INRA-CESBIO (SMOS-IC) product is to be as independent as possible from auxiliary data. The SMOS-IC product provides daily SM and τ at the global scale and differs from the operational SMOS Level 3 (SMOSL3) product in the treatment of retrievals over heterogeneous pixels. Specifically, SMOS-IC is much simpler and does not account for corrections associated with the antenna pattern and the complex SMOS viewing angle geometry. It considers pixels as homogeneous to avoid uncertainties and errors linked to inconsistent auxiliary datasets which are used to characterize the pixel heterogeneity in the SMOS L3 algorithm. SMOS-IC also differs from the current SMOSL3 product (Version 300, V300) in the values of the effective vegetation scattering albedo (ω) and soil roughness parameters. An inter-comparison is presented in this study based on the use of ECMWF (European Center for Medium range Weather Forecasting) SM outputs and NDVI (Normalized Difference Vegetation Index) from MODIS (Moderate-Resolution Imaging Spectroradiometer). A six-year (2010–2015) inter-comparison of the SMOS products SMOS-IC and SMOSL3 SM (V300) with ECMWF SM yielded higher correlations and lower ubRMSD (unbiased root mean square difference) for SMOS-IC over most of the pixels. In terms of τ, SMOS-IC τ was found to be better correlated to MODIS NDVI in most regions of the globe, with the exception of the Amazonian basin and the northern mid-latitudes.
Journal Article
A systematic review of the global evolution of self-managed organizations through key characteristics and strategies
by
S. Nandram, Sharda
,
Malik, Elham
,
K. Bindlish, Puneet
in
Behavioral Science and Psychology
,
Behavioral Sciences
,
Best practice
2025
This systematic literature review highlights the growing global interest in self-managed organizations (SMOs), with significant contributions emerging from the United States and the European Union—particularly from Arizona State University and Nyenrode Business Universiteit. Prominent scholars such as Charles Manz and Susan G. Cohen have shaped the theoretical and empirical foundations of this field. The findings indicate that SMOs enhance job satisfaction, commitment, and performance by fostering autonomy, shared decision-making, and a sense of ownership among employees. However, challenges persist in implementation, including resistance to change, complexity in decision-making, and leadership gaps. Drawing on Peter Senge’s Learning Organization Framework, the review identifies best practices, including clarifying roles, co-creating shared visions, fostering transparency, promoting continuous learning, and reinforcing accountability. It concludes by underscoring the need for future research on the long-term effectiveness of SMOs, the evolving role of leadership, and the influence of technology and cultural contexts on self-management practices.
Journal Article
Soil Moisture Mapping from Satellites: An Intercomparison of SMAP, SMOS, FY3B, AMSR2, and ESA CCI over Two Dense Network Regions at Different Spatial Scales
2018
A good knowledge of the quality of the satellite soil moisture products is of great importance for their application and improvement. This paper examines the performance of eight satellite-based soil moisture products, including the Soil Moisture Active Passive (SMAP) passive Level 3 (L3), the Soil Moisture and Ocean Salinity (SMOS) Centre Aval de Traitement des Données SMOS (CATDS) L3, the Japan Aerospace Exploration Agency (JAXA) Advanced Microwave Scanning Radiometer 2 (AMSR2) L3, the Land Parameter Retrieval Model (LPRM) AMSR2 L3, the European Space Agency (ESA) Climate Change Initiative (CCI) L3, the Chinese Fengyun-3B (FY3B) L2 soil moisture products at a coarse resolution of ~0.25°, and the newly released SMAP enhanced passive L3 and JAXA AMSR2 L3 soil moisture products at a medium resolution of ~0.1°. The ground soil moisture used for validation were collected from two well-calibrated and dense networks, including the Little Washita Watershed (LWW) network in the United States and the REMEDHUS network in Spain, each with different land cover. The results show that the SMAP passive soil moisture product outperformed the other products in the LWW network region, with an unbiased root mean square (ubRMSE) of 0.027 m3 m−3, whereas the FY3B soil moisture performed the best in the REMEDHUS network region, with an ubRMSE of 0.025 m3 m−3. The JAXA product performed much better at 0.25° than at 0.1°, but at both resolutions it underestimated soil moisture most of the time (bias < −0.05 m3 m−3). The SMAP-enhanced passive soil moisture product captured the temporal variation of ground measurements well, with a correlation coefficient larger than 0.8, and was generally superior to the JAXA product. The LPRM showed much larger amplitude and temporal variation than the ground soil moisture, with a wet bias larger than 0.09 m3 m−3. The underestimation of surface temperature may have contributed to the general dry bias found in the SMAP (−0.018 m3 m−3 for LWW and 0.016 m3 m−3 for REMEDHUS) and SMOS (−0.004 m3 m−3 for LWW and −0.012 m3 m−3 for REMEDHUS) soil moisture products. The ESA CCI product showed satisfactory performance with acceptable error metrics (ubRMSE < 0.045 m3 m−3), revealing the effectiveness of merging active and passive soil moisture products. The good performance of SMAP and FY3B demonstrates the potential in integrating them into the existing long-term ESA CCI product, in order to form a more reliable and useful product.
Journal Article
Empowering nurses: exploring self-managed organizations in Indian healthcare
2023
Background
Given India’s high patient load on the existing healthcare setup, as well as political, social, and organizational challenges, the nursing sector is facing various problems, therefore leading to substandard nursing experiences leading to poor patient care at the parallel healthcare setups, specifically homecare. This paper presents self-managed organizations (SMOs) characterized by a horizontal management structure as an effective alternative to existing hierarchical management structures overladen with bureaucracy. Therefore, we are exploring the strategies at self-managed homecare organizations that can make nursing a better and more productive experience.
Method
This study utilized Constructivist Grounded Theory (CGT), employing semi-structured interviews to explore nursing dynamics in horizontal organizational structures. It delved into crucial aspects like finances, organizational structure, value systems, information flow, and conflict resolution within SMOs. The methodology involved theoretical sampling, prioritizing expert self-management knowledge over mere representativeness. Seven nurses, twelve management members, and fifteen patients from self-managed homecare organizations contributed to the examination of nursing experiences. Constant comparative analysis of data led to the identification of the Qualitative Success Enablers (QSEs), revealing three themes: Insightfulness, Enhancing Nursing Experience through Job Enrichment, and Autonomy-Enabled Intrapreneurship.
Results
The findings indicate that the horizontal management structure represented by the studied organization in India has shown considerable success in times laden with uncertainties during the COVID-19 pandemic, especially during the delta wave, which revealed the frailty of existing healthcare infrastructure. The organization successfully maintained a better nursing experience and gained patient and employee satisfaction, as revealed by in-depth semi-structured interviews and constant comparative analysis.
Conclusion
In a world of unique challenges, we stand on the brink of significant transformations. SMOs are vital in India’s homecare sector for enhancing nursing experiences and overall organizational performance. Fostering a trust-based environment within SMOs is integral to delivering effective services. The autonomy to design nursing jobs, insightfulness, and innovativeness in the nursing job through suitable training activities, various job enrichment methods, and finding meaningfulness in a job through softer aspects of caregiving result in an enhanced nursing experience at SMOs. This groundbreaking approach can be extended to other homecare organizations in India, relieving the strain on the existing healthcare system.
Journal Article
Evaluation of SMOS, SMAP, ASCAT and Sentinel-1 Soil Moisture Products at Sites in Southwestern France
by
Al Bitar, Ahmad
,
Calvet, Jean-Christophe
,
Rodríguez-Fernández, Nemesio
in
Accuracy
,
ASCAT
,
Bias
2018
This study evaluates the accuracy of several recent remote sensing Surface Soil Moisture (SSM) products at sites in southwestern France. The products used are Soil Moisture Active Passive “SMAP” (level 3: 36 km × 36 km, level 3 enhanced: 9 km × 9 km, and Level 2 SMAP/Sentinel-1: 1 km × 1km), Advanced Scatterometer “ASCAT” (level 2 with three spatial resolution 25 km × 25 km, 12.5 km × 12.5 km, and 1 km × 1 km), Soil Moisture and Ocean Salinity “SMOS” (SMOS INRA-CESBIO “SMOS-IC”, SMOS Near-Real-Time “SMOS-NRT”, SMOS Centre Aval de Traitement des Données SMOS level 3 “SMOS-CATDS”, 25 km × 25 km) and Sentinel-1(S1) (25 km × 25 km, 9 km × 9 km, and 1 km × 1 km). The accuracy of SSM products was computed using in situ measurements of SSM observed at a depth of 5 cm. In situ measurements were obtained from the SMOSMANIA ThetaProbe (Time Domaine reflectometry) network (7 stations between 1 January 2016 and 30 June 2017) and additional field campaigns (near Montpellier city in France, between 1 January 2017 and 31 May 2017) in southwestern France. For our study sites, results showed that (i) the accuracy of the Level 2 SMAP/Sentinel-1 was lower than that of SMAP-36 km and SMAP-9 km; (ii) the SMAP-36 km and SMAP-9 km products provide more precise SSM estimates than SMOS products (SMOS-IC, SMOS-NRT, and SMOS-CATDS), mainly due to higher sensitivity of SMOS to RFI (Radio Frequency Interference) noise; and (iii) the accuracy of SMAP-36 km and SMAP-9 km products was similar to that of ASCAT (ASCAT-25 km, ASCAT-12.5 km and ASCAT-1 km) and S1 (S1-25 km, S1-9 km, and S1-1 km) products. The accuracy of SMAP, Sentinel-1 and ASCAT SSM products calculated using the average of statistics obtained on each site is defined by a bias of about −3.2 vol. %, RMSD (Root Mean Square Difference) about 7.6 vol. %, ubRMSD (unbiased Root Mean Square Difference)about 5.6 vol. %, and R coefficient about 0.57. For SMOS products, the station average bias, RMSD, ubRMSD, and R coefficient were about −10.6 vol. %, 12.7 vol. %, 5.9 vol. %, and 0.49, respectively.
Journal Article
Validation of Spaceborne and Modelled Surface Soil Moisture Products with Cosmic-Ray Neutron Probes
2017
The scale difference between point in situ soil moisture measurements and low resolution satellite products limits the quality of any validation efforts in heterogeneous regions. Cosmic Ray Neutron Probes (CRNP) could be an option to fill the scale gap between both systems, as they provide area-average soil moisture within a 150–250 m radius footprint. In this study, we evaluate differences and similarities between CRNP observations, and surface soil moisture products from the Advanced Microwave Scanning Radiometer 2 (AMSR2), the METOP-A/B Advanced Scatterometer (ASCAT), the Soil Moisture Active and Passive (SMAP), the Soil Moisture and Ocean Salinity (SMOS), as well as simulations from the Global Land Data Assimilation System Version 2 (GLDAS2). Six CRNPs located on five continents have been selected as test sites: the Rur catchment in Germany, the COSMOS sites in Arizona and California (USA), and Kenya, one CosmOz site in New South Wales (Australia), and a site in Karnataka (India). Standard validation scores as well as the Triple Collocation (TC) method identified SMAP to provide a high accuracy soil moisture product with low noise or uncertainties as compared to CRNPs. The potential of CRNPs for satellite soil moisture validation has been proven; however, biomass correction methods should be implemented to improve its application in regions with large vegetation dynamics.
Journal Article
Sea ice thickness retrieval from SMOS brightness temperatures during the Arctic freeze-up period
2012
The Microwave Imaging Radiometer using Aperture Synthesis (MIRAS) on board the European Space Agency's (ESA) Soil Moisture and Ocean Salinity (SMOS) mission for the first time measures globally Earth's radiation at a frequency of 1.4 GHz (L‐band). It had been hypothesized that L‐band radiometry can be used to measure the sea ice thickness due to the large penetration depth in the sea ice medium. We demonstrate the potential of SMOS to derive the thickness of thin sea ice for the Arctic freeze‐up period using a novel retrieval algorithm based on Level 1C brightness temperatures. The SMOS ice thickness product is compared with an ice growth model and independent sea ice thickness estimates from MODIS thermal infrared imagery. The ice thickness derived from SMOS is highly consistent with the temporal development of the growth simulation and agrees with the ice thickness from MODIS images with 10 cm standard deviation. The results confirm that SMOS can be used to retrieve sea ice thickness up to half a meter under ideal cold conditions with surface air temperatures below −10°C and high‐concentration sea ice coverage. Key Points SMOS can be used to retrieve sea ice thickness up to half a meter in the Arctic SMOS sea ice thickness agrees with independent validation data The brightness temperature and thickness relation is justified
Journal Article
Disaggregation of SMOS Soil Moisture to 100 m Resolution Using MODIS Optical/Thermal and Sentinel-1 Radar Data: Evaluation over a Bare Soil Site in Morocco
by
Eweys, Omar Ali
,
Escorihuela, Maria José
,
Merlin, Olivier
in
Backscattering
,
Disaggregation
,
DISPATCH
2017
The 40 km resolution SMOS (Soil Moisture and Ocean Salinity) soil moisture, previously disaggregated at a 1 km resolution using the DISPATCH (DISaggregation based on Physical And Theoretical scale CHange) method based on MODIS optical/thermal data, is further disaggregated to 100 m resolution using Sentinel-1 backscattering coefficient (σ°). For this purpose, three distinct radar-based disaggregation methods are tested by linking the spatio-temporal variability of σ° and soil moisture data at the 1 km and 100 m resolution. The three methods are: (1) the weight method, which estimates soil moisture at 100 m resolution at a certain time as a function of σ° ratio (100 m to 1 km resolution) and the 1 km DISPATCH products of the same time; (2) the regression method which estimates soil moisture as a function of σ° where the regression parameters (e.g., intercept and slope) vary in space and time; and (3) the Cumulative Distribution Function (CDF) method, which estimates 100 m resolution soil moisture from the cumulative probability of 100 m resolution backscatter and the maximum to minimum 1 km resolution (DISPATCH) soil moisture difference. In each case, disaggregation results are evaluated against in situ measurements collected between 1 January 2016 and 11 October 2016 over a bare soil site in central Morocco. The determination coefficient (R2) between 1 km resolution DISPATCH and localized in situ soil moisture is 0.31. The regression and CDF methods have marginal effect on improving the DISPATCH accuracy at the station scale with a R2 between remotely sensed and in situ soil moisture of 0.29 and 0.34, respectively. By contrast, the weight method significantly improves the correlation between remotely sensed and in situ soil moisture with a R2 of 0.52. Likewise, the soil moisture estimates show low root mean square difference with in situ measurements (RMSD= 0.032 m3 m−3).
Journal Article
A Human Activity Recognition System Based on Dynamic Clustering of Skeleton Data
by
Dario, Paolo
,
Manzi, Alessandro
,
Cavallo, Filippo
in
Algorithms
,
assisted living
,
Classification
2017
Human activity recognition is an important area in computer vision, with its wide range of applications including ambient assisted living. In this paper, an activity recognition system based on skeleton data extracted from a depth camera is presented. The system makes use of machine learning techniques to classify the actions that are described with a set of a few basic postures. The training phase creates several models related to the number of clustered postures by means of a multiclass Support Vector Machine (SVM), trained with Sequential Minimal Optimization (SMO). The classification phase adopts the X-means algorithm to find the optimal number of clusters dynamically. The contribution of the paper is twofold. The first aim is to perform activity recognition employing features based on a small number of informative postures, extracted independently from each activity instance; secondly, it aims to assess the minimum number of frames needed for an adequate classification. The system is evaluated on two publicly available datasets, the Cornell Activity Dataset (CAD-60) and the Telecommunication Systems Team (TST) Fall detection dataset. The number of clusters needed to model each instance ranges from two to four elements. The proposed approach reaches excellent performances using only about 4 s of input data (~100 frames) and outperforms the state of the art when it uses approximately 500 frames on the CAD-60 dataset. The results are promising for the test in real context.
Journal Article
Satellite Salinity Observing System: Recent Discoveries and the Way Forward
by
Misra, Sidharth
,
Lee, Tong
,
Reul, Nicolas
in
Air-water exchanges
,
Boundary currents
,
Carbon cycle
2019
Advances in L-band microwave satellite radiometry in the past decade, pioneered by ESA's SMOS and NASA's Aquarius and SMAP missions, have demonstrated an unprecedented capability to observe global sea surface salinity (SSS) from space. Measurements from these missions are the only means to probe the very-near surface salinity (top cm), providing a unique monitoring capability for the interfacial exchanges of water between the atmosphere and the upper-ocean, and delivering a wealth of information on various salinity processes in the ocean, linkages with the climate and water cycle, including land-sea connections, and providing constraints for ocean prediction models. The satellite SSS data are complimentary to the existing in situ systems such as Argo that provide accurate depiction of large-scale salinity variability in the open ocean but under-sample mesoscale variability, coastal oceans and marginal seas, and energetic regions such as boundary currents and fronts. In particular, salinity remote sensing has proven valuable to systematically monitor the open oceans as well as coastal regions up to approximately 40 km from the coasts. This is critical to addressing societally relevant topics, such as land-sea linkages, coastal-open ocean exchanges, research in the carbon cycle, near-surface mixing, and air-sea exchange of gas and mass. In this paper, we provide a community perspective on the major achievements of satellite SSS for the aforementioned topics, the unique capability of satellite salinity observing system and its complementarity with other platforms, uncertainty characteristics of satellite SSS, and measurement versus sampling errors in relation to in situ salinity measurements. We also discuss the need for technological innovations to improve the accuracy, resolution, and coverage of satellite SSS, and the way forward to both continue and enhance salinity remote sensing as part of the integrated Earth Observing System in order to address societal needs.
Journal Article