Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
1,226
result(s) for
"sodium azide"
Sort by:
Sodium azide mutagenesis induces a unique pattern of mutations
by
Frascarelli, Giulia
,
Fay, Justin C.
,
Stec, Adrian O.
in
Amino acid sequence
,
Barley
,
Biology and Life Sciences
2025
The nature and effect of mutations are of fundamental importance to the evolutionary process. The generation of mutations with mutagens has also played important roles in genetics. Applications of mutagens include dissecting the genetic basis of trait variation, inducing desirable traits in crops, and understanding the nature of genetic load. Previous studies of sodium azide-induced mutations have reported single nucleotide variants (SNVs) found in individual genes. To characterize the nature of mutations induced by sodium azide, we analyze whole-genome sequencing (WGS) of 11 barley lines derived from sodium azide mutagenesis, where all lines were selected for diminution of plant fitness owing to induced mutations. We contrast observed mutagen-induced variants with those found in standing variation in WGS of 13 barley landraces. Here, we report indels that are two orders of magnitude more abundant than expected based on nominal mutation rates. We found induced SNVs are very specific, with C → T changes occurring in a context followed by another C on the same strand (or the reverse complement). The codons most affected by the mutagen include the sodium azide-specific CC motif (or the reverse complement), resulting in a handful of amino acid changes and few stop codons. The specific nature of induced mutations suggests that mutagens could be chosen based on experimental goals. Sodium azide would not be ideal for gene knockouts but will create many missense mutations with more subtle effects on protein function.
Journal Article
Nonthermal ATP-dependent fluctuations contribute to the in vivo motion of chromosomal loci
by
Weber, Stephanie C
,
Spakowitz, Andrew J
,
Theriot, Julie A
in
2,4-Dinitrophenol
,
2,4-Dinitrophenol - pharmacology
,
Adenosine triphosphatase
2012
Chromosomal loci jiggle in place between segregation events in prokaryotic cells and during interphase in eukaryotic nuclei. This motion seems random and is often attributed to Brownian motion. However, we show here that locus dynamics in live bacteria and yeast are sensitive to metabolic activity. When ATP synthesis is inhibited, the apparent diffusion coefficient decreases, whereas the subdiffusive scaling exponent remains constant. Furthermore, the magnitude of locus motion increases more steeply with temperature in untreated cells than in ATP-depleted cells. This \"superthermal\" response suggests that untreated cells have an additional source of molecular agitation, beyond thermal motion, that increases sharply with temperature. Such ATP-dependent fluctuations are likely mechanical, because the heat dissipated from metabolic processes is insufficient to account for the difference in locus motion between untreated and ATP-depleted cells. Our data indicate that ATP-dependent enzymatic activity, in addition to thermal fluctuations, contributes to the molecular agitation driving random (sub)diffusive motion in the living cell.
Journal Article
Acquisition and transfer of antibiotic resistance genes in association with conjugative plasmid or class 1 integrons of Acinetobacter baumannii
by
Leungtongkam, Udomluk
,
Tasanapak, Kannipa
,
Sitthisak, Sutthirat
in
Acinetobacter
,
Acinetobacter baumannii
,
Acinetobacter baumannii - genetics
2018
Conjugation is a type of horizontal gene transfer (HGT) that serves as the primary mechanism responsible for accelerating the spread of antibiotic resistance genes in Gram-negative bacteria. The present study aimed to elucidate the mechanisms underlying the conjugation-mediated gene transfer from the extensively drug-resistant Acinetobacter baumannii (XDR-AB) and New Delhi Metallo-beta-lactamase-1-producing Acinetobacter baumannii (NDM-AB) to environmental isolates of Acinetobacter spp. Conjugation experiments demonstrated that resistance to ticarcillin and kanamycin could be transferred from four donors to two sodium azide-resistant A. baumannii strains, namely, NU013R and NU015R. No transconjugants were detected on Mueller-Hinton Agar (MHA) plates containing tetracycline. Plasmids obtained from donors as well as successful transconjugants were characterized by PCR-based replicon typing and S1-nuclease pulsed-field gel electrophoresis (S1-PFGE). Detection of antibiotic resistance genes and integrase genes (int) was performed using PCR. Results revealed that the donor AB364 strain can transfer the blaOXA-23 and blaPER-1 genes to both recipients in association with int1. A 240-kb plasmid was successfully transferred from the donor AB364 to recipients. In addition, the aphA6 and blaPER-1 genes were co-transferred with the int1 gene from the donor strains AB352 and AB405. The transfer of a 220-kb plasmid from the donors to recipient was detected. The GR6 plasmid containing the kanamycin resistance gene (aphA6) was successfully transferred from the donor strain AB140 to both recipient strains. However, the blaNDM-1 and tet(B) genes were not detected in all transconjugants. Our study is the first to demonstrate successful in vitro conjugation, which indicated that XDR-AB contained combination mechanisms of the co-transfer of antimicrobial resistance elements with integron cassettes or with the plasmid group GR6. Thus, conjugation could be responsible for the emergence of new types of antibiotic-resistant strains.
Journal Article
Engineering non-haem iron enzymes for enantioselective C(sp3)–F bond formation via radical fluorine transfer
2024
In recent years there has been a surge in the development of methods for the synthesis of organofluorine compounds. However, enzymatic methods for C-F bond formation have been limited to nucleophilic fluoride substitution. Here, we report the incorporation of iron-catalysed radical fluorine transfer, a reaction mechanism that is not used in naturally occurring enzymes, into enzymatic catalysis for the development of biocatalytic enantioselective C(
)-F bond formation. Using this strategy, we repurposed (
)-2-hydroxypropylphosphonate epoxidase from
(
HppE) to catalyse an
-fluoroamide directed C(
)-H fluorination. Directed evolution has enabled
HppE to be optimized, forming diverse chiral benzylic fluoride products with turnover numbers of up to 180 and with excellent enantiocontrol (up to 94% e.e.). Mechanistic investigations showed that the N-F bond activation is the rate-determining step, and the strong preference for fluorination in the presence of excess NaN
can be attributed to the spatial proximity of the carbon-centered radical to the iron-bound fluoride.
Journal Article
Biochemical and molecular profiling of induced high yielding M3 mutant lines of two Trigonella species: Insights into improved yield potential
2024
Trigonella
, commonly known as Fenugreek, is among the most promising medicinal herbs consumed worldwide due its protein rich dietary contributions. This study involved induced mutagenesis on two
Trigonella
species (
Trigonella foenum-graecum
var. PEB and
Trigonella corniculata
var. Pusa kasuri) using caffeine and sodium azide as mutagens, resulting in the identification of nine high-yielding mutant lines in the M
3
generation. Molecular characterization using SCoT markers revealed a high polymorphism of 28.3% and 46.7% in PEB and Pusa kasuri, respectively, facilitating the investigation of genetic divergence among the control and mutant lines. Similarity correlation analysis indicated a high similarity between mutant A and mutant C (0.97) and between mutant J and mutant O (0.88), while the lowest similarity was observed between mutant B and mutant F (0.74) and between control and mutant L (0.58). Mutant F and Mutant J displayed the highest seed yield and its attributing traits, and seed protein content in PEB and Pusa kasuri, respectively. Physiological parameters, including chlorophyll content (Mutants A and N) and carotenoids (mutant A and J), exhibited improvements. Assessment of stomatal and seed characteristics using scanning electron microscopy may lead to improved physiological processes and distinction at the interspecific level, respectively. Methanolic extracts of the control and the mutant lines of both species were subjected to GC-MS analysis, revealing 24 major phytocompounds known for their pharmacological activities (antioxidant, anti-inflammatory, anticancer, etc.). Statistical methods such as Pearson correlation heatmap and pairwise scatter plot matrix provided insights into the correlations and linear associations among parameters for both PEB and Pusa kasuri. The strong correlation between iron content and seeds per pod in the mutant lines suggests a promising avenue for further research. Continued research and breeding efforts using these mutants can lead to significant advancements in agriculture and medicine, benefiting farmers, consumers, and industries alike.
Journal Article
SulfoxFluor-enabled deoxyazidation of alcohols with NaN3
2022
Direct deoxyazidation of alcohols with NaN
3
is a straightforward method for the synthesis of widely used alkyl azides in organic chemistry. However, known methods have some limitations such as high reaction temperatures and narrow substrate scope. Herein, a general and practical method for the preparation of alkyl azides from alcohols using NaN
3
has been developed.
N
-tosyl-4-chlorobenzenesulfonimidoyl fluoride (SulfoxFluor) plays an important role in this deoxyazidation process, which converts a broad range of alcohols into alkyl azides at room temperature. The power of this deoxyazidation protocol has been demonstrated by successful late-stage deoxyazidation of natural products and pharmaceutically relevant molecules.
Azides are common moieties in chemical synthesis. Here the authors present a methodology to synthesize alkyl azides in one step from simple alcohols under mild conditions.
Journal Article
Purification and Characterization of an Extracellular, Thermo-Alkali-Stable, Metal Tolerant Laccase from Bacillus tequilensis SN4
by
Gupta, Naveen
,
Sharma, Prince
,
Saini, Shilpa
in
Alkali metals
,
Analysis of Variance
,
Bacillus
2014
A novel extracellular thermo-alkali-stable laccase from Bacillus tequilensis SN4 (SN4LAC) was purified to homogeneity. The laccase was a monomeric protein of molecular weight 32 KDa. UV-visible spectrum and peptide mass fingerprinting results showed that SN4LAC is a multicopper oxidase. Laccase was active in broad range of phenolic and non-phenolic substrates. Catalytic efficiency (kcat/Km) showed that 2, 6-dimethoxyphenol was most efficiently oxidized by the enzyme. The enzyme was inhibited by conventional inhibitors of laccase like sodium azide, cysteine, dithiothreitol and β-mercaptoethanol. SN4LAC was found to be highly thermostable, having temperature optimum at 85°C and could retain more than 80% activity at 70°C for 24 h. The optimum pH of activity for 2, 6-dimethoxyphenol, 2, 2'-azino bis[3-ethylbenzthiazoline-6-sulfonate], syringaldazine and guaiacol was 8.0, 5.5, 6.5 and 8.0 respectively. Enzyme was alkali-stable as it retained more than 75% activity at pH 9.0 for 24 h. Activity of the enzyme was significantly enhanced by Cu2+, Co2+, SDS and CTAB, while it was stable in the presence of halides, most of the other metal ions and surfactants. The extracellular nature and stability of SN4LAC in extreme conditions such as high temperature, pH, heavy metals, halides and detergents makes it a highly suitable candidate for biotechnological and industrial applications.
Journal Article
Endocytosis-like DNA uptake by cell wall-deficient bacteria
2022
Horizontal gene transfer in bacteria is widely believed to occur via conjugation, transduction and transformation. These mechanisms facilitate the passage of DNA across the protective cell wall using sophisticated machinery. Here, we report that cell wall-deficient bacteria can engulf DNA and other extracellular material via an endocytosis-like process. Specifically, we show that L-forms of the filamentous actinomycete
Kitasatospora viridifaciens
can take up plasmid DNA, polysaccharides (dextran) and 150-nm lipid nanoparticles. The process involves invagination of the cytoplasmic membrane, leading to formation of intracellular vesicles that encapsulate extracellular material. DNA uptake is not affected by deletion of genes homologous to
comEC
and
comEA
, which are required for natural transformation in other species. However, uptake is inhibited by sodium azide or incubation at 4 °C, suggesting the process is energy-dependent. The encapsulated materials are released into the cytoplasm upon degradation of the vesicle membrane. Given that cell wall-deficient bacteria are considered a model for early life forms, our work reveals a possible mechanism for primordial cells to acquire food or genetic material before invention of the bacterial cell wall.
Horizontal gene transfer in bacteria can occur through mechanisms such as conjugation, transduction and transformation, which facilitate the passage of DNA across the cell wall. Here, Kapteijn et al. show that cell wall-deficient bacteria can take up DNA and other extracellular materials via an endocytosis-like process.
Journal Article
Sodium azide (NaN3) intoxication, “the man who lived”: potential effective antidote and treatment strategy
by
Kluijtmans, Leo A. J.
,
de Jong, Lutea A. A.
,
Olyslager, Erik J. H.
in
Acidosis
,
Amino acids
,
Analysis
2025
This case report describes the successful treatment of a suicide attempt involving the ingestion of a supralethal dose of sodium azide (NaN
3
), presenting a prospective novel antidote and therapeutic approach. Treatment encompassed the implementation of high-volume continuous veno-venous hemofiltration (HV-CVVH) alongside the administration of levocarnitine. The latter demonstrated a substantial mitigation of lactate concentration. Comprehensive analyses of serum, ultrafiltrate, and urine revealed the efficacy of HV-CVVH in elimination of NaN
3
. Our case report presents a potential therapeutic approach for managing otherwise fatal NaN
3
intoxications.
Journal Article
Assessment of Bio-physiological damages and cytological aberrations in cowpea varieties treated with gamma rays and sodium azide
by
Khan, Samiullah
,
Tantray, Younas Rasheed
,
Raina, Aamir
in
Aberration
,
Analysis
,
Biological damage
2023
The assessment of mutagen induced biological damage forms an important study in determining the mutagenic potency and genotypic sensitivity, a vital aspect in mutation breeding programs. A prior assessment of lethal dose (LD50), mutagen induced biological damage (alterations in bio-physiological traits and frequency of cytological aberrations) is a prerequisite for determining an optimum mutagen dose in a successful mutation breeding experiment. Therefore, in a multi-year project of mutation breeding, two widely cultivated varieties of cowpea viz., Gomati VU-89 and Pusa-578, were treated with gamma (γ) rays and sodium azide (SA) doses. The results reflected a proportionate increase in bio-physiological damages with the increase in mutagenic doses and caused a substantial reduction in mean seed germination and seedling height. Different cytological aberrations such as cytomixis, univalents, chromosome stickiness, precocious separation, unequal separation, bridges, laggards, disturbed polarity, dyads, triads, and polyads were observed in both varieties. All the mutagen doses induced a broader spectrum of cytological aberrations with varying frequencies.
Journal Article