Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
70
result(s) for
"soil moisture and ocean salinity satellite (SMOS)"
Sort by:
Disaggregation of SMOS Soil Moisture to 100 m Resolution Using MODIS Optical/Thermal and Sentinel-1 Radar Data: Evaluation over a Bare Soil Site in Morocco
by
Eweys, Omar Ali
,
Escorihuela, Maria José
,
Merlin, Olivier
in
Backscattering
,
Disaggregation
,
DISPATCH
2017
The 40 km resolution SMOS (Soil Moisture and Ocean Salinity) soil moisture, previously disaggregated at a 1 km resolution using the DISPATCH (DISaggregation based on Physical And Theoretical scale CHange) method based on MODIS optical/thermal data, is further disaggregated to 100 m resolution using Sentinel-1 backscattering coefficient (σ°). For this purpose, three distinct radar-based disaggregation methods are tested by linking the spatio-temporal variability of σ° and soil moisture data at the 1 km and 100 m resolution. The three methods are: (1) the weight method, which estimates soil moisture at 100 m resolution at a certain time as a function of σ° ratio (100 m to 1 km resolution) and the 1 km DISPATCH products of the same time; (2) the regression method which estimates soil moisture as a function of σ° where the regression parameters (e.g., intercept and slope) vary in space and time; and (3) the Cumulative Distribution Function (CDF) method, which estimates 100 m resolution soil moisture from the cumulative probability of 100 m resolution backscatter and the maximum to minimum 1 km resolution (DISPATCH) soil moisture difference. In each case, disaggregation results are evaluated against in situ measurements collected between 1 January 2016 and 11 October 2016 over a bare soil site in central Morocco. The determination coefficient (R2) between 1 km resolution DISPATCH and localized in situ soil moisture is 0.31. The regression and CDF methods have marginal effect on improving the DISPATCH accuracy at the station scale with a R2 between remotely sensed and in situ soil moisture of 0.29 and 0.34, respectively. By contrast, the weight method significantly improves the correlation between remotely sensed and in situ soil moisture with a R2 of 0.52. Likewise, the soil moisture estimates show low root mean square difference with in situ measurements (RMSD= 0.032 m3 m−3).
Journal Article
Satellite Soil Moisture: Review of Theory and Applications in Water Resources
2017
Soil moisture (SM) plays an important role in the water and energy exchanges that occur in the terrestrial surface. Soil moisture can be retrieved at a larger scale by using the visible and InfraRed (IR) bands as well as through the microwave remote sensing. Because of very high importance of SM for variety of applications, there are now two dedicated microwave satellites in the Earth’s orbit for soil moisture retrieval from space. The first, Soil Moisture and Ocean Salinity (SMOS) satellite has been launched by the European Space Agency in November 2009 and second is Soil Moisture Active and Passive (SMAP) launched by the National Aeronautics and Space Administration (NASA) in January 2015. In this review, brief background of soil moisture retrieval algorithms are presented with different applications in the area of water resources. The first section provides the introduction of the soil moisture, presents several in situ techniques for measurement of soil moisture and soil moisture retrieval algorithms from visible/IR and microwave remote sensing. Section
2
describes the satellite soil moisture applications in water resources.
Journal Article
Assessment of Multi-Scale SMOS and SMAP Soil Moisture Products across the Iberian Peninsula
by
Jagdhuber, Thomas
,
Vall-llossera, Mercè
,
Pablos, Miriam
in
forests
,
Iberian Peninsula
,
irrigated farming
2020
In the last decade, technological advances led to the launch of two satellite missions dedicated to measure the Earth’s surface soil moisture (SSM): the ESA’s Soil Moisture and Ocean Salinity (SMOS) launched in 2009, and the NASA’s Soil Moisture Active Passive (SMAP) launched in 2015. The two satellites have an L-band microwave radiometer on-board to measure the Earth’s surface emission. These measurements (brightness temperatures TB) are then used to generate global maps of SSM every three days with a spatial resolution of about 30–40 km and a target accuracy of 0.04 m3/m3. To meet local applications needs, different approaches have been proposed to spatially disaggregate SMOS and SMAP TB or their SSM products. They rely on synergies between multi-sensor observations and are built upon different physical assumptions. In this study, temporal and spatial characteristics of six operational SSM products derived from SMOS and SMAP are assessed in order to diagnose their distinct features, and the rationale behind them. The study is focused on the Iberian Peninsula and covers the period from April 2015 to December 2017. A temporal inter-comparison analysis is carried out using in situ SSM data from the Soil Moisture Measurements Station Network of the University of Salamanca (REMEDHUS) to evaluate the impact of the spatial scale of the different products (1, 3, 9, 25, and 36 km), and their correspondence in terms of temporal dynamics. A spatial analysis is conducted for the whole Iberian Peninsula with emphasis on the added-value that the enhanced resolution products provide based on the microwave-optical (SMOS/ERA5/MODIS) or the active–passive microwave (SMAP/Sentinel-1) sensor fusion. Our results show overall agreement among time series of the products regardless their spatial scale when compared to in situ measurements. Still, higher spatial resolutions would be needed to capture local features such as small irrigated areas that are not dominant at the 1-km pixel scale. The degree to which spatial features are resolved by the enhanced resolution products depend on the multi-sensor synergies employed (at TB or soil moisture level), and on the nature of the fine-scale information used. The largest disparities between these products occur in forested areas, which may be related to the reduced sensitivity of high-resolution active microwave and optical data to soil properties under dense vegetation.
Journal Article
The Characterization of the Vertical Distribution of Surface Soil Moisture Using ISMN Multilayer In Situ Data and Their Comparison with SMOS and SMAP Soil Moisture Products
by
Zhang, Hengjie
,
Yang, Na
,
Xiang, Feng
in
Accuracy
,
Artificial satellites in remote sensing
,
calibration and validation
2023
In this paper, we investigated the vertical distribution characteristics of surface soil moisture based on ISMN (International Soil Moisture Network) multilayer in situ data (5, 10, and 20 cm; 2, 4, and 8 in) and performed comparisons between the in situ data and four microwave satellite remote sensing products (SMOS L2, SMOS-IC, SMAP L2, and SMAP L4). The results showed that the mean soil moisture difference between layers can be −0.042~−0.024 (for the centimeter group)/−0.067~−0.044 (for the inch group) m3/m3 in negative terms and 0.020~0.028 (for the centimeter group)/0.036~0.040 (for the inch group) m3/m3 in positive terms. The surface soil moisture was found to have very significant stratification characteristics, and the interlayer difference was close to or beyond the SMOS and SMAP 0.04 m3/m3 nominal retrieval accuracy. Comparisons revealed that the satellite retrievals had a higher correlation with the field measurements of 5 cm/2 in, and SMAP L4 had the smallest difference with the in situ data. The mean difference caused by using 10 cm/4 in and 20 cm/8 in in situ data instead of the 5 cm/2 in data could be about −0.019~−0.018/−0.18~−0.015 m3/m3 and −0.026~−0.023/−0.043~−0.039 m3/m3, respectively, meaning that there would be a potential depth mismatch in the data validation.
Journal Article
Random Forests with Bagging and Genetic Algorithms Coupled with Least Trimmed Squares Regression for Soil Moisture Deficit Using SMOS Satellite Soil Moisture
by
Triantakonstantis, Dimitris
,
Srivastava, Prashant K.
,
Petropoulos, George P.
in
Agricultural management
,
Algorithms
,
Catchment scale
2021
Soil Moisture Deficit (SMD) is a key indicator of soil water content changes and is valuable to a variety of applications, such as weather and climate, natural disasters, agricultural water management, etc. Soil Moisture and Ocean Salinity (SMOS) is a dedicated mission focused on soil moisture retrieval and can be utilized for SMD estimation. In this study, the use of soil moisture derived from SMOS has been provided for the estimation of SMD at a catchment scale. Several approaches for the estimation of SMD are implemented herein, using algorithms such as Random Forests (RF) and Genetic Algorithms coupled with Least Trimmed Squares (GALTS) regression. The results show that for SMD estimation, the RF algorithm performed best as compared to the GALTS, with Root Mean Square Errors (RMSEs) of 0.021 and 0.024, respectively. All in all, our study findings can provide important assistance towards developing the accuracy and applicability of remote sensing-based products for operational use.
Journal Article
Machine Learning Techniques for Downscaling SMOS Satellite Soil Moisture Using MODIS Land Surface Temperature for Hydrological Application
by
Islam, Tanvir
,
Srivastava, Prashant K.
,
Ramirez, Miguel Rico
in
Algorithms
,
Applied geophysics
,
Artificial intelligence
2013
Many hydrologic phenomena and applications such as drought, flood, irrigation management and scheduling needs high resolution satellite soil moisture data at a local/regional scale. Downscaling is a very important process to convert a coarse domain satellite data to a finer spatial resolution. Three artificial intelligence techniques along with the generalized linear model (GLM) are used to improve the spatial resolution of Soil Moisture and Ocean Salinity (SMOS) derived soil moisture, which is currently available at a very coarse scale of ~40 Km. Artificial neural network (ANN), support vector machine, relevance vector machine and generalized linear models are chosen for this study to integrate the Moderate Resolution Imaging Spectroradiometer (MODIS) Land Surface Temperature (LST) with the SMOS derived soil moisture. Soil moisture deficit (SMD) derived from a hydrological model called PDM (Probability Distribution Model) is used for the downscaling performance evaluation. The statistical evaluation has also been made with the day-time and night-time MODIS LST differences with the mean day and night-time PDM SMD data for the selection of effective MODIS products. The accuracy and robustness of all the downscaling algorithms are discussed in terms of their assumptions and applicability. The statistical performance indices such as
R
2
,
%Bias
and
RMSE
indicates that the ANN (
R
2
= 0.751
,
%Bias = −0.628
and
RMSE = 0.011
), RVM (
R
2
= 0.691
,
%Bias = 1.009
and
RMSE = 0.013
), SVM (
R
2
= 0.698
,
%Bias = 2.370
and
RMSE = 0.013
) and GLM (
R
2
= 0.698
,
%Bias = 1.009
and
RMSE = 0.013
) algorithms on the whole are relatively more skillful to downscale the variability of the soil moisture in comparison to the non-downscaled data (
R
2
= 0.418
and
RMSE = 0.017
) with the outperformance of ANN algorithm. The other attempts related to growing and non-growing seasons have been used in this study to reveal that season based downscaling is even better than continuous time series with fairly high performance statistics.
Journal Article
Global Analysis of Coastal Gradients of Sea Surface Salinity
by
Alory, Gaël
,
da Silva, Alex Costa
,
Dossa, Alina N.
in
Active satellites
,
Amazon River plume
,
Biodiversity and Ecology
2021
Sea surface salinity (SSS) is a key variable for ocean–atmosphere interactions and the water cycle. Due to its climatic importance, increasing efforts have been made for its global in situ observation, and dedicated satellite missions have been launched more recently to allow homogeneous coverage at higher resolution. Cross-shore SSS gradients can bear the signature of different coastal processes such as river plumes, upwelling or boundary currents, as we illustrate in a few regions. However, satellites performances are questionable in coastal regions. Here, we assess the skill of four gridded products derived from the Soil Moisture Ocean Salinity (SMOS) and Soil Moisture Active Passive (SMAP) satellites and the GLORYS global model reanalysis at capturing cross-shore SSS gradients in coastal bands up to 300 km wide. These products are compared with thermosalinography (TSG) measurements, which provide continuous data from the open ocean to the coast along ship tracks. The comparison shows various skills from one product to the other, decreasing as the coast gets closer. The bias in reproducing coastal SSS gradients is unrelated to how the SSS biases evolve with the distance to the coast. Despite limited skill, satellite products generally agree better with collocated TSG data than a global reanalysis and show a large range of coastal SSS gradients with different signs. Moreover, satellites reveal a global dominance of coastal freshening, primarily related to river runoff over shelves. This work shows a great potential of SSS remote sensing to monitor coastal processes, which would, however, require a jump in the resolution of future SSS satellite missions to be fully exploited.
Journal Article
Satellite-Observed Soil Moisture as an Indicator of Wildfire Risk
2020
Wildfires are a concerning issue in Canada due to their immediate impact on people’s lives, local economy, climate, and environment. Studies have shown that the number of wildfires and affected areas in Canada has increased during recent decades and is a result of a warming and drying climate. Therefore, identifying potential wildfire risk areas is increasingly an important aspect of wildfire management. The purpose of this study is to investigate if remotely sensed soil moisture products from the Soil Moisture and Ocean Salinity (SMOS) satellite can be used to identify potential wildfire risk areas for better wildfire management. We used the National Fire Database (NFDB) fire points and polygons to group the wildfires according to ecozone classifications, as well as to analyze the SMOS soil moisture data over the wildfire areas, between 2010–2017, across fourteen ecozones in Canada. Timeseries of 3-day, 5-day, and 7-day soil moisture anomalies prior to the onset of each wildfire occurrence were examined over the ecozones individually. Overall, the results suggest, despite the coarse-resolution, SMOS soil moisture products are potentially useful in identifying soil moisture anomalies where wildfire hot-spots may occur.
Journal Article
Evaluation of the Sensitivity of SMOS L-VOD to Forest Above-Ground Biomass at Global Scale
by
Bousquet, Emma
,
Mermoz, Stéphane
,
Mialon, Arnaud
in
aboveground biomass
,
Africa
,
AGB (Above Ground Biomass)
2020
The present study evaluates the L band Vegetation Optical Depth (L-VOD) derived from the Soil Moisture and Ocean Salinity (SMOS) satellite to monitor Above Ground Biomass (AGB) at a global scale. Although SMOS L-VOD has been shown to be a good proxy for AGB in Africa and Tropics, little is known about this relationship at large scale. In this study, we further examine this relationship at a global scale using the latest AGB maps from Saatchi et al. and GlobBiomass computed using data acquired during the SMOS period. We show that at a global scale the L-VOD from SMOS is well-correlated with the AGB estimates from Saatchi et al. and GlobBiomass with the Pearson’s correlation coefficients (R) of 0.91 and 0.94 respectively. Although AGB estimates in Africa and the Tropics are well-captured by SMOS L-VOD (R > 0.9), the relationship is less straightforward for the dense forests over the northern latitudes (R = 0.32 and 0.69 with Saatchi et al. and GlobBiomass respectively). This paper gives strong evidence in support of the sensitivity of SMOS L-VOD to AGB estimates at a globale scale, providing an interesting alternative and complement to exisiting sensors for monitoring biomass evolution. These findings can further facilitate research on biomass now that SMOS is providing more than 10 years of data.
Journal Article
Observations of Mesoscale Eddies in Satellite SSS and Inferred Eddy Salt Transport
2021
Observations of sea surface salinity (SSS) from NASA’s Soil Moisture Active-Passive (SMAP) and ESA’s Soil Moisture and Ocean Salinity (SMOS) satellite missions are used to characterize and quantify the contribution of mesoscale eddies to the ocean transport of salt. Given large errors in satellite retrievals and, consequently, SSS maps, we evaluate two products from the two missions and also use two different methods to assess the eddy transport of salt. Comparing the two missions, we find that the estimates of the eddy transport of salt agree very well, particularly in the tropics and subtropics. The transport is divergent in the subtropical gyres (eddies pump salt out of the gyres) and convergent in the tropics. The estimates from the two satellites start to differ regionally at higher latitudes, particularly in the Southern Ocean and along the Antarctic Circumpolar Current (ACC), resulting, presumably, from a considerable increase in the level of noise in satellite retrievals (because of poor sensitivity of the satellite radiometer to SSS in cold water), or they can be due to insufficient spatial resolution. Overall, our study demonstrates that the possibility of characterizing and quantifying the eddy transport of salt in the ocean surface mixed layer can rely on the use of satellite observations of SSS. Yet, new technologies are required to improve the resolution capabilities of future satellite missions in order to observe mesoscale and sub-mesoscale variability, improve the signal-to-noise ratio, and extend these capabilities to the polar oceans.
Journal Article