Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectCountry Of PublicationPublisherSourceTarget AudienceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
202,641
result(s) for
"soil water"
Sort by:
Does biochar influence soil physical properties and soil water availability?
by
Oliver, Garth
,
Bound, Sally
,
Clothier, Brent
in
Acacia
,
Aggregate stability
,
Agricultural research
2014
AIMS: This study aims to (i) determine the effects of incorporating 47 Mg ha⁻¹ acacia green waste biochar on soil physical properties and water relations, and (ii) to explore the different mechanisms by which biochar influences soil porosity. METHODS: The pore size distribution of the biochar was determined by scanning electron microscope and mercury porosimetry. Soil physical properties and water relations were determined by in situ tension infiltrometers, desorption and evaporative flux on intact cores, pressure chamber analysis at −1,500 kPa, and wet aggregate sieving. RESULTS: Thirty months after incorporation, biochar application had no significant effect on soil moisture content, drainable porosity between –1.0 and −10 kPa, field capacity, plant available water capacity, the van Genuchten soil water retention parameters, aggregate stability, nor the permanent wilting point. However, the biochar-amended soil had significantly higher near-saturated hydraulic conductivity, soil water content at −0.1 kPa, and significantly lower bulk density than the unamended control. Differences were attributed to the formation of large macropores (>1,200 μm) resulting from greater earthworm burrowing in the biochar-amended soil. CONCLUSION: We found no evidence to suggest application of biochar influenced soil porosity by either direct pore contribution, creation of accommodation pores, or improved aggregate stability.
Journal Article
Biochar particle size, shape, and porosity act together to influence soil water properties
by
Gonnermann, Helge M.
,
Dugan, Brandon
,
Masiello, Caroline A.
in
Analysis
,
Atoms & subatomic particles
,
Biochemistry
2017
Many studies report that, under some circumstances, amending soil with biochar can improve field capacity and plant-available water. However, little is known about the mechanisms that control these improvements, making it challenging to predict when biochar will improve soil water properties. To develop a conceptual model explaining biochar's effects on soil hydrologic processes, we conducted a series of well constrained laboratory experiments using a sand matrix to test the effects of biochar particle size and porosity on soil water retention curves. We showed that biochar particle size affects soil water storage through changing pore space between particles (interpores) and by adding pores that are part of the biochar (intrapores). We used these experimental results to better understand how biochar intrapores and biochar particle shape control the observed changes in water retention when capillary pressure is the main component of soil water potential. We propose that biochar's intrapores increase water content of biochar-sand mixtures when soils are drier. When biochar-sand mixtures are wetter, biochar particles' elongated shape disrupts the packing of grains in the sandy matrix, increasing the volume between grains (interpores) available for water storage. These results imply that biochars with a high intraporosity and irregular shapes will most effectively increase water storage in coarse soils.
Journal Article
Effects of modified biochar on water and salt distribution and water-stable macro-aggregates in saline-alkaline soil
2021
PurposeThis study investigated the chemical and physical mechanisms associated with the movement of water and salt in saline-alkali soil amended with different types of biochar.Materials and methodsFour types of biochar were selected: ordinary laboratory-prepared biochar (BC), acidified biochar (HBC), particle size modified biochar (NBC), and composite modified biochar (HNBC). The physical and chemical properties of the biochar treatments were characterized. Vertical infiltration simulation tests were conducted to analyze the effects of modification on the adsorption and distribution of salt ions on biochar, and the soil water-stable macro-aggregates in saline-alkali soil.Results and discussionThe porous structure, specific surface area (SSA), micropore volume (VMIC), and H/C value were increased by acidification, particle size modification, and composite modification. Compared with BC, HBC and HNBC enhanced the O/C and (O+N)/C values, thereby increasing the hydrophilicity. The vertical infiltration tests showed that the depth of the soil wetting peak and cumulative infiltration were both higher than in the control (CK) after adding biochar, where HBC had the greatest water retention capacity. The modified biochar reduced the salt content and water-soluble Na+ content of the soil profile by increasing the soil water content and adsorbing Na+. The modified biochar promoted the formation and stabilization of soil water-stable macro-aggregates. Amending soil with HBC showed the greatest reduction in salt content and increased water-stable macro-aggregation.ConclusionsHBC improved the water retention and Na+ adsorption capacity of biochar. This enhanced the formation of soil water-stable macro-aggregates and improved the effects of biochar on saline-alkali soil by altering soil physical and chemical properties.
Journal Article
An arbuscular mycorrhizal fungus alters soil water retention and hydraulic conductivity in a soil texture specific way
by
Bitterlich, Michael
,
Graefe, Jan
,
Pauwels, Richard
in
Arbuscular mycorrhizas
,
Bulk density
,
Desiccation
2023
Arbuscular mycorrhizal fungi (AMF) alter plant water relations and contribute to soil structure. Although soil hydraulic properties depend on soil structure and may limit plant water uptake, little is known about how AMF influence soil water retention (the relation between the soil water content and soil water potential) and hydraulic conductivity in different soils. Instead, these soil hydraulic properties often are considered to be independent of AMF presence in experiments. We asked if this assumption holds true for both sand and loam. We grew maize plants either inoculated with Rhizophagus irregularis or with autoclaved inoculum in pots filled with quartz sand or loam soil until extraradical spread of the fungus throughout the pots was achieved. Each pot contained a hyphal compartment made of a soil sampling core (250 cm3) covered with a 20-µm nylon mesh to encourage fungus ingrowth but to exclude root ingrowth. We measured soil water retention and unsaturated hydraulic conductivity in these undisturbed root-free soil volumes. We observed that in loam harboring the mycorrhizal fungus, the soil water retention decreased, while in sand, it increased without detectable changes in the soil bulk density. The effects of the fungus on the soil water potential were strongest at low soil water contents in both soils. As a consequence of the altered water potentials in soils with the mycorrhizal fungus, soil hydraulic conductivity increased in loam but decreased in sand after fungus ingrowth. We conclude that in our study, the mycorrhizal fungus acted as a soil conditioner even distant from roots, which encouraged drainage in loams prone to sogginess but enhanced water storage in sands prone to quick desiccation. We recommend considering soil hydraulic properties as being dynamic in future studies on water relations of mycorrhizal plants.
Journal Article
Small Dams : Planning, Construction, and Maintenance
\"A practial guide to determining catchment yield and the amount of water required in a dam. Also advises on working with engineers and contractors, and outlines the causes of dam failures and how to remedy problems quickly. It further covers relevant legislation, as well as environmental and ecological issues from a global perspective, with explicit reference to various countries around the world. An invaluable reference resource for anyone who owns or plans to own a dam, and a useful reference for agencies, contractors and engineers\"-- Provided by publisher.
Plant species richness and functional groups have different effects on soil water content in a decade-long grassland experiment
by
Lange, Markus
,
Hildebrandt, Anke
,
Kreutziger, Yvonne
in
Agglomeration
,
Aggregation
,
Biodiversity
2019
1. The temporal and spatial dynamics of soil water are closely interlinked with terrestrial ecosystems functioning. The interaction between plant community properties such as species composition and richness and soil water mirrors fundamental ecological processes determining above-ground-below-ground feedbacks. Plantwater relations and water stress have attracted considerable attention in biodiversity experiments. Yet, although soil scientific research suggests an influence of ecosystem productivity on soil hydraulic properties, temporal changes of the soil water content and soil hydraulic properties remain largely understudied in biodiversity experiments. Thus, insights on how plant diversity—productivity relationships affect soil water are lacking. 2. Here, we determine which factors related to plant community composition (species and functional group richness, presence of plant functional groups) and soil (organic carbon concentration) affect soil water in a long-term grassland biodiversity experiment (The Jena Experiment). 3. Both plant species richness and the presence of particular functional groups affected soil water content, while functional group richness played no role. The effect of species richness changed from positive to negative and expanded to deeper soil with time. Shortly after establishment, increased topsoil water content was related to higher leaf area index in species-rich plots, which enhanced shading. In later years, higher species richness increased topsoil organic carbon, likely improving soil aggregation. Improved aggregation, in turn, dried topsoils in species-rich plots due to faster drainage of rainwater. Functional groups affected soil water distribution, likely due to plant traits affecting root water uptake depths, shading, or water-use efficiency. For instance, topsoils in plots containing grasses were generally drier, while plots with legumes were moister. 4. Synthesis. Our decade-long experiment reveals that the maturation of grasslands changes the effects of plant richness from influencing soil water content through shading effects to altering soil physical characteristics in addition to modification of water uptake depth. Functional groups affected the soil water distribution by characteristic shifts of root water uptake depth, but did not enhance exploitation of the overall soil water storage. Our results reconcile previous seemingly contradictory results on the relation between grassland species diversity and soil moisture and highlight the role of vegetation composition for soil processes.
Journal Article