Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
61
result(s) for
"solar intrusion"
Sort by:
Analysis of Field of View for a Moon-Based Earth Observation Multispectral Camera
by
Liu, Guang
,
Ye, Hanlin
,
Guo, Huadong
in
Artificial satellites
,
Artificial satellites in remote sensing
,
Atmosphere
2024
A Moon-based Earth observation multispectral camera provides a unique perspective for observing large-scale Earth phenomena. This study focuses on the analysis of the field of view (FOV) for such a sensor. Unlike space-borne sensors, the analysis of the FOV for a Moon-based sensor takes into account not only Earth’s maximum apparent diameter as seen from the lunar surface but also the Earth’s and the solar trajectory in the lunar sky, as well as the pointing accuracy and pointing adjustment temporal intervals of the turntable. Three critical issues are analyzed: (1) The relationship between the Earth’s apparent diameter and the Earth’s phase angle is revealed. It is found that the Earth’s maximum apparent diameter encompasses the Earth’s full phase, suggesting the FOV should exceed this maximum. (2) Regardless of the location on the lunar surface, a sensor will suffer from solar intrusion every orbital period. Although the Earth’s trajectory forms an envelope during an 18.6-year cycle, the FOV should not be excessively large. (3) To design a reasonable FOV, it is necessary to consider both the pointing accuracy and pointing adjustment temporal interval comprehensively. All these insights will guide future Moon-based Earth observation multispectral camera design.
Journal Article
Effects of Solar Intrusion on the Calibration of the Metop-C Advanced Microwave Sounding Unit-A2 Channels
by
Cao, Changyong
,
Yan, Banghua
,
Sun, Ninghai
in
Accuracy
,
Advanced Microwave Sounding Unit-A (AMSU-A)
,
Antennas
2024
This study presents our first discovery about two abnormal problems in the blackbody calibration target associated with the antenna unit A2 in the Metop-C AMSU-A instrument. The problems include the anomalous patterns in both blackbody kinetic temperature Tw and radiative temperature (measured in warm count or Cw), and the time lag between orbital cycles of Tw and Cw. This study further determines solar intrusion as the root cause of the anomalous pattern problem. According to our analysis, solar illumination is constantly observed during each orbit near the satellite terminator, causing anomalous changes in Cw and Tw, characterized by sudden and abnormal increases typically for more than 16 min. The resultant maximum antenna temperature errors due to abnormal increases in Cw are approximately in the range from 0.15 K to 0.25 K, while the maximum errors due to the abnormal increase in Tw are in the range from 0.04 K to 0.07 K, varying with orbit, season, and channel. The time shift feature is characterized with a changeable time lag with the season in the Tw orbital cycle in comparison with the Cw cycle. The longest time lag up to about 18 min occurs in summer through early fall, while the time lag can be decreased down to about 9 min in winter through early spring. Hence, this study underscores the imperative need for future research to rectify radiance errors and reconstruct a more accurate long-term Metop-C AMSU-A radiance data set for channels 1 and 2, crucial for climate studies.
Journal Article
A New 32-Day Average-Difference Method for Calculating Inter-Sensor Calibration Radiometric Biases between SNPP and NOAA-20 Instruments within ICVS Framework
2021
Two existing double-difference (DD) methods, using either a 3rdSensor or Radiative Transfer Modeling (RTM) as a transfer, are applicable primarily for limited regions and channels, and, thus critical in capturing inter-sensor calibration radiometric bias features. A supplementary method is also desirable for estimating inter-sensor calibration biases at the window and lower sounding channels where the DD methods have non-negligible errors. In this study, using the Suomi National Polar-orbiting Partnership (SNPP) and Joint Polar Satellite System (JPSS)-1 (alias NOAA-20) as an example, we present a new inter-sensor bias statistical method by calculating 32-day averaged differences (32D-AD) of radiometric measurements between the same instrument onboard two satellites. In the new method, a quality control (QC) scheme using one-sigma (for radiance difference), or two-sigma (for radiance) thresholds are established to remove outliers that are significantly affected by diurnal biases within the 32-day temporal coverage. The performance of the method is assessed by applying it to estimate inter-sensor calibration radiometric biases for four instruments onboard SNPP and NOAA-20, i.e., Advanced Technology Microwave Sounder (ATMS), Cross-track Infrared Sounder (CrIS), Nadir Profiler (NP) within the Ozone Mapping and Profiler Suite (OMPS), and Visible Infrared Imaging Radiometer Suite (VIIRS). Our analyses indicate that the globally-averaged inter-sensor differences using the 32D-AD method agree with those using the existing DD methods for available channels, with margins partially due to remaining diurnal errors. In addition, the new method shows its capability in assessing zonal mean features of inter-sensor calibration biases at upper sounding channels. It also detects the solar intrusion anomaly occurring on NOAA-20 OMPS NP at wavelengths below 300 nm over the Northern Hemisphere. Currently, the new method is being operationally adopted to monitor the long-term trends of (globally-averaged) inter-sensor calibration radiometric biases at all channels for the above sensors in the Integrated Calibration/Validation System (ICVS). It is valuable in demonstrating the quality consistencies of the SDR data at the four instruments between SNPP and NOAA-20 in long-term statistics. The methodology is also applicable for other POES cross-sensor calibration bias assessments with minor changes.
Journal Article
A chemically inert bismuth interlayer enhances long-term stability of inverted perovskite solar cells
2019
Long-term stability remains a key issue impeding the commercialization of halide perovskite solar cells (HPVKSCs). The diffusion of molecules and ions causes irreversible degradation to photovoltaic device performance. Here, we demonstrate a facile strategy for producing highly stable HPVKSCs by using a thin but compact semimetal Bismuth interlayer. The Bismuth film acts as a robust permeation barrier that both insulates the perovskite from intrusion by undesirable external moisture and protects the metal electrode from iodine corrosion. The Bismuth-interlayer-based devices exhibit greatly improved stability when subjected to humidity, thermal and light stresses. The unencapsulated device retains 88% of its initial efficiency in ambient air in the dark for over 6000 h; the devices maintain 95% and 97% of their initial efficiencies after 85 °C thermal aging and light soaking in nitrogen atmosphere for 500 h, respectively. These sound stability parameters are among the best for planar structured HPVKSCs reported to date.
Long term stability is a major barrier for the commercialization of halide perovskite solar cells. Here Wu et al. demonstrate that a chemically inert and structural impermeability bismuth electrode interlayer greatly increases the stability of unencapsulated perovskite solar cells under harsh conditions.
Journal Article
Computational analysis on solar air heater with combination of alternate dimple protrusions and intrusions on absorber plate with one rounded corner triangular duct
by
Sastry, Gadepalli Ravikiran
,
Gugulothu, Santhosh Kumar
,
Raju, Loddabattu Bharath
in
Aquatic Pollution
,
Atmospheric Protection/Air Quality Control/Air Pollution
,
Boundary conditions
2024
This study focuses on improving heat transfer by converting one of the corners of the duct to a rounded structure. To study the effect of dimpled shaped protrusions and intrusions on the rounded corner triangular duct with a constant radius of curvature by varying relative streamwise distance (z/e) with a constant transverse distance x’/e = 10,14 and 18. Steady-state, turbulent flow heat transfer under thermal boundary conditions is to be analyzed by varying different Reynolds numbers (5600 to 21000). The duct with dimple-shaped protrusions and intrusions is compared with a simple triangular duct. Optimization of relative horizontal distance (z’/e) by keeping constant protrusion to protrusion distance as z/e = 28 and relative transverse distance as x/e = 10, 14, and 18. It was noted that there was a significant loss in friction and a rise in heat transfer. The relationship between friction factor and Nusselt number was formulated using operating and roughness parameters, using the data collected from the numerical investigation. The friction factor increases significantly with roughness elements, and it is maximum for x’/e = 20 at a low Reynolds number. Nusselt number increases with roughness elements, and it is maximum for x’/e = 14 for all Reynolds numbers and all the models. Enhancement of Nusselt number is due to increase of local heat transfer because of local vortex neat heat transfer zone. The maximum outlet temperature is obtained at a low Reynolds number. The maximum temperature of the heated surface is obtained for Rc = 0.67 h and the minimum for Rc = 0.33 h.
Journal Article
Zugspitze ozone 1970–2020: the role of stratosphere–troposphere transport
2023
The pronounced increase in ozone observed at the Alpine station Zugspitze (2962 ma.s.l.) since the 1970s has been ascribed to an increase in stratospheric air descending to the Alps. In this paper, we present a reanalysis of the data from for both ozone (1978 to 2011) and carbon monoxide (1990–2011), which has been extended until 2020 by the data from the Global Atmosphere Watch site at the Umweltforschungsstation Schneefernerhaus (UFS; 2671 ma.s.l. – above sea level), which is located just below the Zugspitze summit. For ozone between 1970 and 1977, a constant annual average of 36.25 ppb (parts per billion) was assumed to have been obtained by extrapolation. The analysis is based on data filtering, utilizing the isotope 7Be (measured between 1970 and 2006) and relative humidity (1970 to 2011; UFS from 2002 to 2020). We estimate both the influence of stratospheric intrusions directly descending to the northern rim of the Alps from the full data filtering and the aged (“indirect”) intrusions from applying a relationship between ozone and the 7Be data. The evaluated total stratospheric contribution to the annual average ozone rises roughly from 12 ppb in 1970 to 24 ppb in 2003. It turns out that the increase in the stratospheric influence is particularly strong in winter. A lowering in positive trend is seen afterwards, with a delay of roughly 1 decade after the beginning of the decrease in the solar irradiation. The air masses hitting the Zugspitze summit became drier until 2003, and we see the growing stratospheric contribution as being an important factor for this drying. Both an increase in the lower-stratospheric ozone and the growing thickness of the intruding layers departing downward from just above the tropopause must be taken into consideration. Carbon monoxide in the intrusions did not change much during the full measurement period from 1990 to 2020, with a slight increase until 2005. This is remarkable since, for air outside intrusions, a decrease by approximately 44 % was found, indicating a substantial improvement in the tropospheric air quality.
Journal Article
Alarming waterweeds proliferation in the Vembanad Lake System might significantly increase water loss through transpiration
2022
Eichhornia crassipes
and
Monochoria vaginalis
are waterweeds, and their uncontrolled proliferation in fresh and brackish water habitats is a serious ecological problem in many parts of the world. These weeds are quite common in the Vembanad Lake System (VLS), India’s second-largest Ramsar wetland. During the non-monsoon season, the Thannermukkom saltwater barrage divides the VLS into two zones: saline water downstream and freshwater upstream. The field sampling of the current study was carried out in the upstream zone of the VLS during the Pre-Monsoon (March 2017). Fresh
Eichhornia
and
Monochoria
samples were collected, transported to the lab, and experiments were conducted under natural light conditions to determine how much extra water they transpire into the atmosphere. The results showed that the water loss in experimental tanks with
Eichhornia
(evapotranspiration) is roughly twice that in control tanks without them (only evaporation).
Monochoria
transpires fairly more water to the atmosphere than
Eichhornia
. These results reveal that the proliferation of waterweeds has a significant adverse effect in conserving water in all freshwater bodies infested with them. The current study also points out that the expansion of waterweeds has the potential to worsen drought conditions as they cause excess water loss into the atmosphere and a faster drying up of freshwater reservoirs. Two possible approaches for managing the waterweeds in the VLS include reducing nutrient loading upstream and more frequent opening of the Thannermukkom saltwater barrage to allow saltwater intrusion, which could inhibit the growing waterweeds.
Journal Article
On the Impact of a Dry Intrusion Driving Cloud-Regime Transitions in a Midlatitude Cold-Air Outbreak
by
Fridlind, Ann M.
,
Elsaesser, Gregory
,
Ackerman, Andrew S.
in
Aerosols
,
Atmospheric precipitations
,
Boundary layer transition
2023
Marine cold-air outbreaks (CAOs) occur in the postfrontal sector of midlatitude storms, usually accompanied by dry intrusions (DIs) shaping the free-tropospheric (FT) air aloft. Substantial rain initiates overcast to broken regime transitions in marine boundary layer (MBL) cloud decks that form where cold air first meets relatively high sea surface temperatures. An exemplary CAO in the northwest Atlantic shows earlier transitions (corresponding to reduced extents of overcast clouds) closer to the low pressure center. We hypothesize that gradients in the meteorological pattern imposed by the prevailing DI induced a variability in substantial rain onset and thereby transition. We compile satellite observations, reanalysis fields, and Lagrangian large-eddy simulations (LES) translating along MBL trajectories to show that postfrontal trajectories closer to the low pressure center are more favorable to rain formation (and thereby cloud transitions) because of 1) weaker FT subsidence rates, 2) greater FT humidity, 3) stronger MBL winds, and 4) a colder MBL with reduced lower-tropospheric stability. LES confirms the observed variability in transitions, with substantial rain appearing earlier where there is swifter reduction of cloud condensation nucleus (CCN) concentration and increase of liquid water path (LWP). Prior to substantial rain, CCN budgets indicate dominant loss terms from FT entrainment and hydrometeor collisions. LWP-enhancing cloud thickness increases more rapidly for weaker large-scale subsidence that enables faster MBL deepening. Mere MBL warming and moistening cannot explain cloud thickness increases. The generality of such a DI-imposed cloud transition pattern merits further investigation with more cases that may additionally be convoluted by onshore aerosol gradients.
Journal Article
Design Efficiency: A Critical Perspective on Testing Methods for Solar-Driven Photothermal Evaporation and Photocatalysis
by
Diamanti, Maria Vittoria
,
Rossi, Sergio
,
Hamza, Hady
in
Aquatic resources
,
Biodegradation
,
Biofouling
2025
Water scarcity is a growing global challenge, intensified by climate change, seawater intrusion, and pollution. While conventional desalination methods are energy-intensive, solar-driven interfacial evaporators offer a promising low-energy solution by leveraging solar energy for water evaporation, with the resulting steam condensed into purified water. Despite advancements, challenges persist, particularly in addressing volatile contaminants and biofouling, which can compromise long-term performance. The integration of photocatalysts into solar-driven interfacial evaporators has been proposed as a solution, enabling pollutant degradation and microbial inactivation while enhancing water transport and self-cleaning properties. This review critically assesses testing methodologies for solar-driven interfacial evaporators incorporating both photothermal and photocatalytic functions. While previous studies have examined materials and system design, the added complexity of photocatalysis necessitates new testing approaches. First, solar still setups are analyzed, particularly concentrating on the selection of materials and geometry for the transparent cover and water-collecting surfaces. Then, performance evaluation tests are discussed, with focus on the types of tested pollutants and analytical techniques. Finally, key challenges are presented, providing insights for future advancements in sustainable water purification.
Journal Article
Lake and Atmospheric Heatwaves Caused by Extreme Dust Intrusion in Freshwater Lake Kinneret in the Eastern Mediterranean
by
Kishcha, Pavel
,
Lechinsky, Yury
,
Starobinets, Boris
in
21st century
,
Absolute humidity
,
advection
2024
The role of dust intrusions in the formation of lake heatwaves has not yet been discussed in previous publications. We investigated a lake heatwave (LHW) and an atmospheric heatwave (AHW) in the freshwater Lake Kinneret in the Eastern Mediterranean: these were caused by an extreme dust intrusion that lasted for a 10-day period (7–17 September 2015). The AHW and LHW were defined as periods of abnormally high air temperature (Tair) and lake surface water temperature (SWT) compared to their 90th percentile thresholds in September. In the daytime, the maximal intensities of AHW and LHW reached 3 °C and 2 °C, respectively. This was despite the pronounced drop in solar radiation due to the dust radiative effect. The satellite SWT retrievals were incapable of representing the abnormally high SWT in the presence of the extreme dust intrusion. Both METEOSAT and MODIS-Terra showed a sharp decrease in the SWT compared to the actual SWT: up to 10 °C in the daytime and up to 15 °C in the nighttime. Such a significant underestimation of the actual SWT in the presence of a dust intrusion should be considered when using satellite data to analyze heatwaves. In the absence of moisture advection, the AHW and LHW were accompanied by an increase of up to 30% in absolute humidity (ρv) over the lake. Being a powerful greenhouse gas, water vapor (characterized by an increased ρv) absorbed most of both the upwelling and downwelling longwave thermal radiation, heating the near-ground atmospheric layer (which is in direct contact with the lake water surface), in the daytime and nighttime. In the nighttime, the maximal intensity of the AHW and LHW reached 4 °C and 3 °C, respectively. Because of the observed steadily increasing dust pollution over the Eastern Mediterranean during the past several decades, we anticipate that dust-related lake heatwaves will intensify adverse effects on aquatic ecosystems such as reducing fishery resources and increasing harmful cyanobacteria blooms.
Journal Article