Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
4
result(s) for
"sorption-enhanced water-gas shift reaction"
Sort by:
Sorption-Enhanced Water-Gas Shift Reaction for Synthesis Gas Production from Pure CO: Investigation of Sorption Parameters and Reactor Configurations
2021
A sorption-enhanced water-gas shift (SEWGS) system providing CO2-free synthesis gas (CO + H2) for jet fuel production from pure CO was studied. The water-gas shift (WGS) reaction was catalyzed by a commercial Cu/ZnO/Al2O3 catalyst and carried out with in-situ CO2 removal on a 20 wt% potassium-promoted hydrotalcite-derived sorbent. Catalyst activity was investigated in a fixed bed tubular reactor. Different sorbent materials and treatments were characterized by CO2 chemisorption among other analysis methods to choose a suitable sorbent. Cyclic breakthrough tests in an isothermal packed bed microchannel reactor (PBMR) were performed at significantly lower modified residence times than those reported in literature. A parameter study gave an insight into the effect of pressure, adsorption feed composition, desorption conditions, as well as reactor configuration on breakthrough delay and adsorbed amount of CO2. Special attention was paid to the steam content. The significance of water during adsorption as well as desorption confirmed the existence of different adsorption sites. Various reactor packing concepts showed that the interaction of relatively fast reaction and relatively slow adsorption kinetics plays a key role in the SEWGS process design at low residence time conditions.
Journal Article
Hydrothermal Fabrication of High Specific Surface Area Mesoporous MgO with Excellent CO2 Adsorption Potential at Intermediate Temperatures
2017
In this work, we report on a novel sodium dodecyl sulfate (SDS)-assisted magnesium oxide (MgO)-based porous adsorbent synthesized by hydrothermal method for intermediate CO2 capture. For industrial MgO, its CO2 adsorption capacity is normally less than 0.06 mmol g−1, with a specific surface area as low as 25.1 m2 g−1. Herein, leaf-like MgO nanosheets which exhibited a disordered layer structure were fabricated by the introduction of SDS surfactants and the control of other synthesis parameters. This leaf-like MgO adsorbent showed an excellent CO2 capacity of 0.96 mmol g−1 at moderate temperatures (~300 °C), which is more than ten times higher than that of the commercial light MgO. This novel mesoporous MgO adsorbent also exhibited high stability during multiple CO2 adsorption/desorption cycles. The excellent CO2 capturing performance was believed to be related to its high specific surface area of 321.3 m2 g−1 and abundant surface active adsorption sites. This work suggested a new synthesis scheme for MgO based CO2 adsorbents at intermediate temperatures, providing a competitive candidate for capturing CO2 from certain sorption enhanced hydrogen production processes.
Journal Article
Cyclic Stability of a Bifunctional Catalyst in the Sorption-Enhanced Reverse Water–Gas Shift Reaction
by
Elzinga, Gerard D.
,
Skorikova, Galina
,
Boon, Jurriaan
in
Adsorbed water
,
Adsorption
,
Aviation
2025
Sorption-enhanced reverse water–gas shift (SE-RWGS), designated as COMAX, was studied using a Pt4A bifunctional catalyst (reactive adsorbent). The bifunctional Pt4A catalyst integrates CO2 activation and reaction with water adsorption functionality, where the active phase is loaded onto a carrier that provides a surface area for Pt dispersion as well as H2O adsorption capacity. The 0.3 wt% Pt-4A molecular sieve reactive sorbent was tested at a kg scale in a pressure swing (reactive) adsorption–regeneration process. More than 400 cycles over 50 days of operation were successfully demonstrated without significant decay. Cyclic stability was achieved, provided that the regeneration temperature was sufficiently high to ensure near-complete dehydration. The single-bead structure withstood the pressure swing operation effectively, with only a maximum of 2% of the total recovered reactive sorbent turning to fines (<500 μm). The successful integration of catalytic activity and water adsorption capacity into a single particle presents opportunities for the further intensification of sorption-enhanced reactions for CO2 conversion.
Journal Article
Syngas Production from Combined Steam Gasification of Biochar and a Sorption-Enhanced Water–Gas Shift Reaction with the Utilization of CO2
by
Vivanpatarakij, Supawat
,
Assabumrungrat, Suttichai
,
Wongsakulphasatch, Suwimol
in
Acids
,
Biomass
,
Carbon dioxide
2019
This research aims at evaluating the performance of a combined system of biochar gasification and a sorption-enhanced water–gas shift reaction (SEWGS) for synthesis gas production. The effects of mangrove-derived biochar gasification temperature, pattern of combined gasification and SEWGS, amount of steam and CO2 added as gasifying agent, and SEWGS temperature were studied in this work. The performances of the combined process were examined in terms of biochar conversion, gaseous product composition, and CO2 emission. The results revealed that the hybrid SEWGS using one-body multi-functional material offered a greater amount of H2 with a similar amount of CO2 emissions when compared with separated sorbent/catalyst material. The gasification temperature of 900 °C provided the highest biochar conversion of ca. 98.7%. Synthesis gas production was found to depend upon the amount of water and CO2 added and SEWGS temperature. Higher amounts of H2 were observed when increasing the amount of water and the temperature of the SEWGS system.
Journal Article