Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
626
result(s) for
"sperm concentration"
Sort by:
FSH dosage effect on conventional sperm parameters: a meta-analysis of randomized controlled studies
by
Condorelli, Rosita
,
Mongioì, Laura
,
La Vignera, Sandro
in
follicle-stimulating hormone; male infertility; oligozoospermia; sperm concentration; sperm count
,
Infertility
,
Meta-analysis
2020
Follicle-stimulating hormone (FSH) represents a therapeutic option in normogonadotropic patients with idiopathic oligozoospermia. The aim of this review was to evaluate the possible dose- and drug-dependent efficacy of FSH treatment on conventional sperm parameters. We performed a comprehensive systematic review via a meta-analysis of all available randomized controlled trials, in which FSH administration was compared with placebo or no treatment when administered to normogonadotropic patients with idiopathic oligozoospermia. Of the 971 articles that were retrieved, 5 were finally included, including a total of 372 patients and 294 controls. Overall, FSH treatment was effective in ameliorating the sperm concentration, total count, progressive motility, but not normal forms. On the basis of the weekly dosage, the studies were classified into those using low (175-262.5 IU per week), intermediate (350-525 IU per week), and high (700-1050 IU per week) doses. At low doses, FSH improved only sperm motility. At intermediate doses, FSH ameliorated sperm concentration and morphology. Total sperm count and progressive motility showed a trend toward the increase. At high doses, FSH increased sperm concentration, total sperm count, and progressive motility. Sperm morphology showed a trend toward the increase. Finally, both highly purified FSH (hpFSH) and recombinant human FSH (rhFSH) improved sperm concentration, total sperm count, progressive motility, but not morphology. No different efficacy was observed between these two preparations. This meta-analysis provides evidence in favor of high FSH doses. The FSH efficacy was not related to the preparation type (recombinant vs highly purified). Further studies are needed to evaluate the effectiveness of long-standing treatment regimes.
Journal Article
Cryopreserving Rabbit Semen: Impact of Varying Sperm Concentrations on Quality and the Standardization of Protocol
by
Lauriola, Fabrizio
,
Rusco, Giusy
,
Di Iorio, Michele
in
Artificial insemination
,
Biodiversity
,
Biological diversity conservation
2023
This study aimed to investigate the impact of sperm concentrations on the in vitro quality of cryopreserved rabbit semen. The semen pools (n = 8, from 80 donors) were split into five aliquots with final sperm concentrations of 15, 25, 35, 55, and 75 × 106 per straw. The sperm motility parameters (CASA system) and membrane integrity (flow cytometric analysis) were both evaluated at various stages of the cryopreservation process: fresh semen dilution, cooling, equilibration, and immediately after and 30 min post-thawing. The results indicated the significant influence of the sperm concentration on the total motility (TM) and progressive motility (PM), with a consistent decline in all sperm variables over the time points. Notably, the semen with a final concentration of 15 × 106 exhibited a higher TM and PM after cooling and equilibration. The post-thawing quality (TM, PM) was higher (p < 0.05) in the mid-range sperm concentrations of 25 × 106 (49.9% and 19.7%) and 35 × 106 (46.2% and 19.7%) compared to the other concentrations. This study demonstrated that the sperm concentration per straw played a significant role in specific phases of the cryopreservation process. These findings contribute valuable insights for refining and standardizing the cryopreservation protocol for rabbit semen, emphasizing the importance of the sperm concentration.
Journal Article
Effect of Green Tea on Weight Gain and Semen Quality of Rabbit Males
by
Makarevich, Alexander
,
Baláži, Andrej
,
Chrenek, Peter
in
adverse effects
,
Animals
,
Antibiotics
2022
The goal of the current study was to evaluate the action of the green tea plant (Camellia sinensis, L) on male rabbit reproduction and some non-reproductive indexes. Male rabbits were fed either a standard diet (control group) or a diet enriched with green tea powder (experimental groups; E): 5 g (E1) or 20 g (E2) per 100 kg of the milled complete feed mixture. Weight gain, sperm concentration, total and progressive motility, as well as haematological, and biochemical parameters and changes in testicular tissue histomorphology were evaluated. Feeding with green tea, at both tested concentrations, decreased weight gain per week and the total average weight gain compared to the control group (p < 0.05). Furthermore, green tea decreased sperm concentration, motility and progressive motility in the group fed with a lower dose (5 g) of green tea powder (p < 0.05), whilst a higher dose (20 g) was neutral. Some haematological and biochemical indexes, like medium-size cell count (MID), mean corpuscular haemoglobin concentration (MCHC), platelet percentage (PCT), levels of phosphorus (P) and total proteins (TP) were decreased in one or both experimental groups (p < 0.05), whilst the triglyceride level (TG) was increased in the E2 group (p < 0.05). The thicknesses of the testicular seminiferous tubules and epithelial layer were not affected by any concentration of green tea powder (p > 0.05). These observations suggest that green tea in the diet may have an adverse effect on rabbit growth and sperm quality, but their effect may be potentially dose-dependent.
Journal Article
The Disappearing Sperms: Analysis of Reports Published Between 1980 and 2015
2017
Reports regarding the changes in sperm concentration in different counties of the world are inconsistent. Furthermore, the reports that sprung up from specific epidemiological and experimental examinations did not include data of prior studies or geographical variations. The current study, following a previous report of massive fall in semen volume over the past 33 years, attempts to delineate the trend of altering sperm concentrations and factors responsible for this by reviewing article published from 1980 to July 2015 with geographic differences. The current study identified an overall 57% diminution in mean sperm concentration over the past 35 years (r = −.313, p = .0002), which, when analyzed for each geographical region, identified a significant decline in North America, Europe, Asia, and Africa. An increasing trend of sperm concentration was identified only in Australia. The association of male age with such a trend (R2 = .979) is reported. The authors also correlated male fertility with sperm concentration. Thus, this comprehensive, evidence-based literature review aims to concisely and systematically present the available data on sperm concentration from 1980 to 2015, as well as to statistically analyze the same and correlate male health with the declining pattern of sperm count in a single scientific review to serve the scientific research zone related to reproductive health. It points to the threat of male infertility in times ahead.
Journal Article
Global trends in semen quality of young men: a systematic review and regression analysis
2023
PurposeMany studies have reported declines in semen quality mainly focused on total sperm counts (TSC) and sperm concentration (SC), ignoring the importance of progressive motile sperm (PR), total motile sperm (TM), and normal morphological sperm (NM). Therefore, we performed a comprehensive meta-analysis to explore the trend in semen quality of young men.MethodsWe searched 3 English databases and 4 Chinese databases from January 1980 to August 2022. Random-effect meta-analyses and weighted linear regression models were conducted to perform the trend in semen quality.ResultsFinally, 162 eligible studies including 264,665 men from 28 countries were got between 1978 and 2021. Significant decreases were observed in TSC (− 3.06 million/year, 95% CI − 3.28 to − 2.84), SC (− 0.47 million/ml/year, 95% CI − 0.51 to − 0.43), and PR (− 0.15%/year, 95% CI − 0.20 to − 0.09), and there was an upward trend in TM (0.28%/year, 95% CI 0.24 to 0.32). The results of meta-regression analyses indicated that age, continent, income, WHO criteria, and abstinence time significantly impacted on TSC, SC, PR, and TM. Positive regression coefficients were observed in some categories suggesting that outcomes might not be declining and even increasing in these subgroups.ConclusionsDownward trends in semen quality among global young men were observed in our study, including TSC, SC, and PR. But TM did not appear to be trending down or even to be leveling off. More studies are needed to focus on the causes of the declines.
Journal Article
Polystyrene microplastics induce blood–testis barrier disruption regulated by the MAPK-Nrf2 signaling pathway in rats
2021
As a persistent pollutant, microplastics (MPs) have been reported to induce sperm quantity decrease in mice. However, the related mechanism remains obscure. Therefore, this study is intended to explore the effects of polystyrene microplastics (PS-MPs) on male reproduction and its related mechanism of blood–testis barrier (BTB) impairment. Thirty-two adult male Wistar rats were divided randomly into four groups fed with PS-MPs for 90 days at doses of 0 mg/day (control group), 0.015 mg/day, 0.15 mg/day, and 1.5 mg/day, respectively. The present results have shown that PS-MP exposure led to the damage of seminiferous tubule, resulted in apoptosis of spermatogenic cells, and decreased the motility and concentration of sperm, while the abnormality of sperm was elevated. Meanwhile, PS-MPs could induce oxidative stress and activate the p38 MAPK pathway and thus deplete the nuclear factor erythroid-2 related factor 2 (Nrf2). Noteworthily, PS-MPs led to the BTB-related protein expression decrease. All these results demonstrated that PS-MP exposure may lead to the destruction of BTB integrity and the apoptosis of spermatogenic cells through the activation of the MAPK-Nrf2 pathway. The current study provided novelty evidence for elucidating the effects of PS-MPs on male reproductive toxicity and its potential mechanism.
Journal Article
Temporal decline of sperm concentration: role of endocrine disruptors
2023
Introduction
Male infertility is a widespread disease with an etiology that is not always clear. A number of studies have reported a decrease in sperm production in the last forty years. Although the reasons are still undefined, the change in environmental conditions and the higher exposure to endocrine-disrupting chemicals (EDCs), namely bisphenol A, phthalates, polychlorinated biphenyls, polybrominated diphenyl esters, dichlorodiphenyl-dichloroethylene, pesticides, and herbicides, organophosphates, and heavy metals, starting from prenatal life may represent a possible factor justifying the temporal decline in sperm count.
Aim
The aim of this study is to provide a comprehensive description of the effects of the exposure to EDCs on testicular development, spermatogenesis, the prevalence of malformations of the male genital tract (cryptorchidism, testicular dysgenesis, and hypospadias), testicular tumor, and the mechanisms of testicular EDC-mediated damage.
Narrative review
Animal studies confirm the deleterious impact of EDCs on the male reproductive apparatus. EDCs can compromise male fertility by binding to hormone receptors, dysregulating the expression of receptors, disrupting steroidogenesis and hormonal metabolism, and altering the epigenetic mechanisms. In humans, exposure to EDCs has been associated with poor semen quality, increased sperm DNA fragmentation, increased gonadotropin levels, a slightly increased risk of structural abnormalities of the genital apparatus, such as cryptorchidism and hypospadias, and development of testicular tumor. Finally, maternal exposure to EDCs seems to predispose to the risk of developing testicular tumors.
Conclusion
EDCs negatively impact the testicular function, as suggested by evidence in both experimental animals and humans. A prenatal and postnatal increase to EDC exposure compared to the past may likely represent one of the factors leading to the temporal decline in sperm counts.
Journal Article
Mitochondria Quality Control and Male Fertility
by
Oliveira, Pedro F.
,
Braga, Patrícia C.
,
Rebelo, Irene
in
Apoptosis
,
Bioenergetics
,
biogenesis
2023
Mitochondria are pivotal to cellular homeostasis, performing vital functions such as bioenergetics, biosynthesis, and cell signalling. Proper maintenance of these processes is crucial to prevent disease development and ensure optimal cell function. Mitochondrial dynamics, including fission, fusion, biogenesis, mitophagy, and apoptosis, maintain mitochondrial quality control, which is essential for overall cell health. In male reproduction, mitochondria play a pivotal role in germ cell development and any defects in mitochondrial quality can have serious consequences on male fertility. Reactive oxygen species (ROS) also play a crucial role in sperm capacitation, but excessive ROS levels can trigger oxidative damage. Any imbalance between ROS and sperm quality control, caused by non-communicable diseases or environmental factors, can lead to an increase in oxidative stress, cell damage, and apoptosis, which in turn affect sperm concentration, quality, and motility. Therefore, assessing mitochondrial functionality and quality control is essential to gain valuable insights into male infertility. In sum, proper mitochondrial functionality is essential for overall health, and particularly important for male fertility. The assessment of mitochondrial functionality and quality control can provide crucial information for the study and management of male infertility and may lead to the development of new strategies for its management.
Journal Article
Impact of environmental factors on human semen quality and male fertility: a narrative review
2022
BackgroundWorldwide rising trend in infertility has been observed in the past few years with male infertility arising as a major problem. One main reason for the rise in male infertility cases is declining semen quality. It was found that any factor that affects semen quality can affect male fertility. There are several modifiable factors affecting semen quality including air pollution, use of pesticides and harmful chemicals, exposure to excessive heat, and can lead to decreased male fertility.Main bodyThe present review focuses on some of these environmental factors that affect semen quality and hence, can cause male infertility. The literature from 2000 till June 2021 was searched from various English peer-reviewed journals and WHO fact sheets using the USA National Library of Medicine (PubMed) database, the regional portal of Virtual Health Library, and Scientific Electronic Library Online. The search terms used were: “Air pollution and male fertility”, “Chemicals and male infertility”, “Heat exposure and infertility”, “heavy metals and male fertility”.ConclusionAdverse environmental factors have a significant impact on semen quality, leading to decreased sperm concentration, total sperm count, motility, viability, and increased abnormal sperm morphology, sperm DNA fragmentation, ultimately causing male infertility. However, all these factors are modifiable and reversible, and hence, by mere changing of lifestyle, many of these risk factors can be avoided.
Journal Article
Impact of Coenzyme Q10 and Selenium on Seminal Fluid Parameters and Antioxidant Status in Men with Idiopathic Infertility
2021
Oxidative stress (OS) is a key contributing factor in 30–80% of male infertility cases. To date, several antioxidant treatments have been put forth to manage OS-induced male infertility. This study intended to elucidate the impact of coenzyme Q10 (CoQ10) and selenium on seminal fluid parameters and antioxidant status in infertile men with idiopathic oligoasthenoteratospermia (OAT). In this prospective study, 70 patients with idiopathic OAT were randomly allocated to receive CoQ10 (200 mg/day) or selenium (200 μg/day) for 3 months. Semen quality parameters (following WHO guidelines, 5th edition), total antioxidant capacity (TAC), catalase (CAT), and superoxide dismutase (SOD) activities were compared before and after the treatment. The results of the study showed an increase in sperm concentration with CoQ10 treatment (p < 0.01) as well as increased progressive sperm motility (p < 0.01 and p < 0.05) and total sperm motility (p < 0.01 and p < 0.05) with CoQ10 and selenium treatment respectively. There was also a significant improvement in TAC (p < 0.01 and p < 0.05) and SOD (p < 0.01 and p < 0.05) following treatment with CoQ10 and selenium respectively while CAT improved only with CoQ10 therapy (p < 0.05). Sperm concentration, motility, and morphology also correlated significantly with TAC, SOD, and CAT (r = 0.37–0.76). In conclusion, treatment with CoQ10 (200 mg) or selenium (200 μg) could improve sperm concentration, motility, and antioxidant status in infertile men with idiopathic OAT with CoQ10 providing the higher improvement.
Journal Article