Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
24,547 result(s) for "spermatozoa"
Sort by:
Oxidative stress and male infertility: current knowledge of pathophysiology and role of antioxidant therapy in disease management
Infertility is a global health problem involving about 15% of couples. Approximately half of the infertility cases are related to male factors. The oxidative stress, which refers to an imbalance in levels of reactive oxygen species (ROS) and antioxidants, is one of the main causes of infertility in men. A small amount of ROS is necessary for the physiological function of sperm including the capacitation, hyperactivation and acrosomal reaction. However, high levels of ROS can cause infertility through not only by lipid peroxidation or DNA damage but inactivation of enzymes and oxidation of proteins in spermatozoa. Oxidative stress (OS) is mainly caused by factors associated with lifestyle. Besides, immature spermatozoa, inflammatory factors, genetic mutations and altering levels of sex hormones are other main source of ROS. Since OS occurs due to the lack of antioxidants and its side effects in semen, lifestyle changes and antioxidant regimens can be helpful therapeutic approaches to overcome this problem. The present study aimed to describe physiological ROS production, roles of genetic and epigenetic factors on the OS and male infertility with various mechanisms such as lipid peroxidation, DNA damage, and disorder of male hormone profile, inflammation, and varicocele. Finally, the roles of oral antioxidants and herbs were explained in coping with OS in male infertility.
Initial collection, characterization, and storage of tuatara
Successful reproduction is critical to the persistence of at-risk species; however, reproductive characteristics are understudied in many wild species. New Zealand's endemic tuatara (Sphenodon punctatus), the sole surviving member of the reptile order Rhynchocephalia, is restricted to 10% of its historic range. To complement ongoing conservation efforts, we collected and characterized mature sperm from male tuatara for the first time. Semen collected both during mating and from urine after courting contained motile sperm and had the potential for a very high percentage of viable sperm cells (98%). Scanning electron microscopy revealed a filiform sperm cell with distinct divisions: head, midpiece, tail, and reduced end piece. Finally, our initial curvilinear velocity estimates for tuatara sperm are 2-4 times faster than any previously studied reptile. Further work is needed to examine these trends at a larger scale; however, this research provides valuable information regarding reproduction in this basal reptile.
Association between gestational trophoblastic disease cycles
Background Gestational trophoblastic disease (GTD) usually affects young women of childbearing age. After treatment for GTD, 86% of women wish to achieve pregnancy. On account of the impacts of GTD and treatments as well as patient anxiety, large numbers of couples turn to assisted reproductive technology (ART), especially in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI). But few studies have investigated whether a history of GTD affects the outcomes of IVF/ICSI in secondary infertile patients and how it occurs. We investigate whether a history of GTD affects the IVF/ICSI outcomes and the live birth rates in women with secondary infertility. Methods This retrospective cohort study enrolled 176 women with secondary infertility who underwent IVF/ICSI treatment at the reproductive medical center of Nanjing Drum Tower Hospital from January 1, 2016, to December 31, 2020. Participants were divided into the GTD group (44 women with GTD history) and control group (132 women without GTD history matched from 8318 secondary infertile women). The control group and the study group were matched at a ratio of 3:1 according to patient age, infertility duration, number of cycles and body mass index (BMI). We assessed retrieved oocytes and high-grade embryos, biochemical pregnancy, miscarriage, ectopic pregnancy, gestational age at delivery, delivery mode and live birth rates. Result(s) We found a significantly reduced live-birth rate (34.1% vs 66.7%) associated with IVF/ICSI cycles in patients with a GTD history compared to those without a GTD history. The biochemical pregnancy and miscarriage rates of the GTD group were slightly higher than those of the control group. In addition, there was a difference in gestational age at delivery between the GTD and control groups (p < 0.001) but no differences in the mode of delivery (p = 0.267). Furthermore, the number of abandoned embryos in the GTD group was greater than that in the control group (p = 0.018), and the number of good-quality embryos was less than that in the control group (p = 0.019). The endometrial thickness was thinner (p < 0.001) in the GTD group. Immunohistochemistry (IHC) showed abnormal endometrial receptivity in the GTD group. Conclusion(s) The GTD history of patients undergoing IVF/ICSI cycles had an impact on the live-birth rate and gestational age at delivery, which might result from the thinner endometrium and abnormal endometrial receptivity before embryo transfer. Keywords: IVF/ICSI, GTD history, live-birth rate, gestational age at delivery, endometrial receptivity
Sperm defects in primary ciliary dyskinesia and related causes of male infertility
The core axoneme structure of both the motile cilium and sperm tail has the same ultrastructural 9 + 2 microtubular arrangement. Thus, it can be expected that genetic defects in motile cilia also have an effect on sperm tail formation. However, recent studies in human patients, animal models and model organisms have indicated that there are differences in components of specific structures within the cilia and sperm tail axonemes. Primary ciliary dyskinesia (PCD) is a genetic disease with symptoms caused by malfunction of motile cilia such as chronic nasal discharge, ear, nose and chest infections and pulmonary disease (bronchiectasis). Half of the patients also have situs inversus and in many cases male infertility has been reported. PCD genes have a role in motile cilia biogenesis, structure and function. To date mutations in over 40 genes have been identified cause PCD, but the exact effect of these mutations on spermatogenesis is poorly understood. Furthermore, mutations in several additional axonemal genes have recently been identified to cause a sperm-specific phenotype, termed multiple morphological abnormalities of the sperm flagella (MMAF). In this review, we discuss the association of PCD genes and other axonemal genes with male infertility, drawing particular attention to possible differences between their functions in motile cilia and sperm tails.
The Role of the Epididymis and the Contribution of Epididymosomes to Mammalian Reproduction
It is well-established that testicular spermatozoa are immature and acquire motility and fertilization capabilities during transit throughout the epididymis. The epididymis is a duct-like organ that connects the testis to the vas deferens and is comprised of four anatomical regions: the initial segment, caput, corpus, and cauda. Sperm maturation occurs during epididymal transit by the interaction of sperm cells with the unique luminal environment of each epididymal region. In this review we discuss the epididymis as an essential reproductive organ responsible for sperm concentration, maturation (including sperm motility acquisition and fertilizing ability), protection and storage. Importantly, we also discuss specific characteristics and roles of epididymal-derived exosomes (epididymosomes) in establishing sperm competency within the intricate process of reproduction. This review suggests that an increasing body of evidence is working to develop a complete picture of the role of the epididymis in male reproduction, offspring health, and disease susceptibility.
In vitro production of functional sperm in cultured neonatal mouse testes
Preserving sperm fertility Reproducing the complex process of spermatogenesis in vitro might lead to the development of new diagnostic and therapeutic techniques for male infertility. Takehiko Ogawa and colleagues have now established in vitro organ culture conditions that can support the production of fertile sperm from spermatogonia of neonatal mice. Spermatids and sperm that were derived in vitro produced healthy and fertile mice. In addition, neonatal testis tissues that were cryopreserved for several months resumed complete spermatogenesis in vitro on thawing. The organ culture method is simple and, with further refinements, could be applicable to a variety of mammalian species. This work suggests that cryopreservation of the testis tissue of paediatric cancer patients could become a practical way of ensuring future fertility. Reproducing the complex process of spermatogenesis in vitro might lead to the development of new diagnostic and therapeutic techniques for male infertility. This study establishes in vitro organ culture conditions that can support complete spermatogenesis in mice. The in - vitro -derived spermatids and sperm produced healthy and fertile mice, and testis tissue fragments used as a starting material for in vitro spermatogenesis could be cryopreserved for months and then resumed full spermatogenesis in vitro . Spermatogenesis is one of the most complex and longest processes of sequential cell proliferation and differentiation in the body, taking more than a month from spermatogonial stem cells, through meiosis, to sperm formation 1 , 2 . The whole process, therefore, has never been reproduced in vitro in mammals 3 , 4 , 5 , nor in any other species with a very few exceptions in some particular types of fish 6 , 7 . Here we show that neonatal mouse testes which contain only gonocytes or primitive spermatogonia as germ cells can produce spermatids and sperm in vitro with serum-free culture media. Spermatogenesis was maintained over 2 months in tissue fragments positioned at the gas–liquid interphase. The obtained spermatids and sperm resulted in healthy and reproductively competent offspring through microinsemination. In addition, neonatal testis tissues were cryopreserved and, after thawing, showed complete spermatogenesis in vitro . Our organ culture method could be applicable through further refinements to a variety of mammalian species, which will serve as a platform for future clinical application as well as mechanistic understanding of spermatogenesis.
Uncovering sperm metabolome to discover biomarkers for bull fertility
Background Subfertility decreases the efficiency of the cattle industry because artificial insemination employs spermatozoa from a single bull to inseminate thousands of cows. Variation in bull fertility has been demonstrated even among those animals exhibiting normal sperm numbers, motility, and morphology. Despite advances in research, molecular and cellular mechanisms underlying the causes of low fertility in some bulls have not been fully elucidated. In this study, we investigated the metabolic profile of bull spermatozoa using non-targeted metabolomics. Statistical analysis and bioinformatic tools were employed to evaluate the metabolic profiles high and low fertility groups. Metabolic pathways associated with the sperm metabolome were also reported. Results A total of 22 distinct metabolites were detected in spermatozoa from bulls with high fertility (HF) or low fertility (LF) phenotype. The major metabolite classes of bovine sperm were organic acids/derivatives and fatty acids/conjugates. We demonstrated that the abundance ratios of five sperm metabolites were statistically different between HF and LF groups including gamma-aminobutyric acid (GABA), carbamate, benzoic acid, lactic acid, and palmitic acid. Metabolites with different abundances in HF and LF bulls had also VIP scores of greater than 1.5 and AUC- ROC curves of more than 80%. In addition, four metabolic pathways associated with differential metabolites namely alanine, aspartate and glutamate metabolism, β-alanine metabolism, glycolysis or gluconeogenesis, and pyruvate metabolism were also explored. Conclusions This is the first study aimed at ascertaining the metabolome of spermatozoa from bulls with different fertility phenotype using gas chromatography-mass spectrometry. We identified five metabolites in the two groups of sires and such molecules can be used, in the future, as key indicators of bull fertility.
Bacteria-Mediated Anomalous Rho GTPase Activation Alters Sperm Structure and Provokes Premature Capacitation Events: A Possible Mechanism of Infertility
Male infertility is often linked to sperm quality issues; however, the mechanisms behind these alterations remain unclear in certain contexts. This study investigates the impact of anomalous Rho GTPase activation—a process triggered by bacterial toxins—on human sperm structure and function. Human spermatozoa were exposed in vitro to a Rho GTPase activator derived from Escherichia coli under both capacitating and non-capacitating conditions. The results showed increased RhoA GTPase activity in non-capacitating conditions, without affecting viability or mitochondrial membrane potential. However, progressive motility decreased across both conditions, while non-progressive motility and acrosome reaction rates increased. Additionally, intracellular calcium levels rose exclusively in non-capacitating conditions. Structural analysis revealed an increase in abnormal sperm morphology, particularly vacuoles in the sperm head. These findings highlight that anomalous Rho GTPase activation disrupts essential processes like motility and capacitation, which are crucial for successful fertilization. This study provides novel insights into how bacterial infections may induce sperm damage, proposing that Rho GTPase activity could serve as a biomarker for evaluating sperm quality in cases of infertility linked to urogenital infections. Understanding these mechanisms may improve diagnostic and therapeutic approaches for male infertility associated with bacterial pathogens. Human spermatozoa were exposed in vitro to a Rho GTPase activator derived from Escherichia coli under both capacitating and non-capacitating conditions.
Screening Y Chromosome Microdeletion in 1121 Men with Low Sperm Concentration and the Outcomes of Microdissection Testicular Sperm Extraction
Background: The Y chromosome has a specific region, namely the Azoospermia Factor (AZF) because azoospermia is typically reported in the microdeletion of the AZF region. This study aims to assess the characteristics of AZF microdeletion after screening a massive number of low sperm concentration men; and the Microdissection testicular sperm extraction (mTESE) outcomes for retrieving sperm from azoospermic patients. Materials and Methods: This retrospective multiple-center study enrolled a total of 1121 men with azoospermia, cryptozoospermia, and severe oligozoospermia from December 2016 to June 2022. An extension analysis used a total of 17 STSs to detect the position-occurring microdeletion in the AZF region (AZFa, b, c, and/or d loci). Microdissection testicular sperm extraction (mTESE) was performed to retrieve sperm in azoospermic men diagnosed AZFc microdeletion. Results: One hundred and fifty-three men carried AZF microdeletion were detected in the 1121 participants (13.64%). The incidences of AZF microdeletion were confined to AZF a, c, and d regions, both individual and concurrence, with the most common in the AZFc region accounting for 49.67%; There was no significant difference in clinical and paraclinical characteristics between the deleted regions, except FSH level (highest in AZFa microdeletion, p = 0.043). The AZFc region was the most common type of AZF microdeletion (49.67%), including complete microdeletion (4 patients) and gr/gr partial microdeletion (39 patients) with 50.00% and 63.63% in the success rate of mTESE, separately. Conclusion: The absence of AZFa and/or AZFb regions often express the most severe phenotype--azoospermia and the increasing FSH level. The AZFc region played the most common microdeletion. Microdissection testicular sperm extraction (mTESE) was the possible therapy for sperm retrieval from the testis of azoospermia men having AZFc microdeletion. Keywords: Y chromosome microdeletion, AZF microdeletion, azoospermia, mTESE