Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
10,228 result(s) for "splicing factor"
Sort by:
Specific inhibition of splicing factor activity by decoy RNA oligonucleotides
Alternative splicing, a fundamental step in gene expression, is deregulated in many diseases. Splicing factors (SFs), which regulate this process, are up- or down regulated or mutated in several diseases including cancer. To date, there are no inhibitors that directly inhibit the activity of SFs. We designed decoy oligonucleotides, composed of several repeats of a RNA motif, which is recognized by a single SF. Here we show that decoy oligonucleotides targeting splicing factors RBFOX1/2, SRSF1 and PTBP1, can specifically bind to their respective SFs and inhibit their splicing and biological activities both in vitro and in vivo. These decoy oligonucleotides present an approach to specifically downregulate SF activity in conditions where SFs are either up-regulated or hyperactive. Alternative splicing, critical for gene expression, is deregulated in many diseases. Here the authors develop decoy oligonucleotides to specifically downregulate splicing factors activity.
Identification of phenothiazine derivatives as UHM-binding inhibitors of early spliceosome assembly
Interactions between U2AF homology motifs (UHMs) and U2AF ligand motifs (ULMs) play a crucial role in early spliceosome assembly in eukaryotic gene regulation. UHM-ULM interactions mediate heterodimerization of the constitutive splicing factors U2AF65 and U2AF35 and between other splicing factors that regulate spliceosome assembly at the 3′ splice site, where UHM domains of alternative splicing factors, such as SPF45 and PUF60, contribute to alternative splicing regulation. Here, we performed high-throughput screening using fluorescence polarization assays with hit validation by NMR and identified phenothiazines as general inhibitors of UHM-ULM interactions. NMR studies show that these compounds occupy the tryptophan binding pocket of UHM domains. Co-crystal structures of the inhibitors with the PUF60 UHM domain and medicinal chemistry provide structure-activity-relationships and reveal functional groups important for binding. These inhibitors inhibit early spliceosome assembly on pre-mRNA substrates in vitro. Our data show that spliceosome assembly can be inhibited by targeting UHM-ULM interactions by small molecules, thus extending the toolkit of splicing modulators for structural and biochemical studies of the spliceosome and splicing regulation. So far only a few compounds have been reported as splicing modulators. Here, the authors combine high-throughput screening, chemical synthesis, NMR, X-ray crystallography with functional studies and develop phenothiazines as inhibitors for the U2AF Homology Motif (UHM) domains of proteins that regulate splicing and show that they inhibit early spliceosome assembly on pre-mRNA substrates in vitro.
Pol II phosphorylation regulates a switch between transcriptional and splicing condensates
The synthesis of pre-mRNA by RNA polymerase II (Pol II) involves the formation of a transcription initiation complex, and a transition to an elongation complex 1 – 4 . The large subunit of Pol II contains an intrinsically disordered C-terminal domain that is phosphorylated by cyclin-dependent kinases during the transition from initiation to elongation, thus influencing the interaction of the C-terminal domain with different components of the initiation or the RNA-splicing apparatus 5 , 6 . Recent observations suggest that this model provides only a partial picture of the effects of phosphorylation of the C-terminal domain 7 – 12 . Both the transcription-initiation machinery and the splicing machinery can form phase-separated condensates that contain large numbers of component molecules: hundreds of molecules of Pol II and mediator are concentrated in condensates at super-enhancers 7 , 8 , and large numbers of splicing factors are concentrated in nuclear speckles, some of which occur at highly active transcription sites 9 – 12 . Here we investigate whether the phosphorylation of the Pol II C-terminal domain regulates the incorporation of Pol II into phase-separated condensates that are associated with transcription initiation and splicing. We find that the hypophosphorylated C-terminal domain of Pol II is incorporated into mediator condensates and that phosphorylation by regulatory cyclin-dependent kinases reduces this incorporation. We also find that the hyperphosphorylated C-terminal domain is preferentially incorporated into condensates that are formed by splicing factors. These results suggest that phosphorylation of the Pol II C-terminal domain drives an exchange from condensates that are involved in transcription initiation to those that are involved in RNA processing, and implicates phosphorylation as a mechanism that regulates condensate preference. RNA polymerase II with a hypophosphorylated C-terminal domain preferentially incorporates into mediator condensates, and with a hyperphosphorylated C-terminal domain into splicing-factor condensates, revealing phosphorylation as a regulatory mechanism in condensate preference.
Impaired hematopoiesis and leukemia development in mice with a conditional knock-in allele of a mutant splicing factor gene U2af1
Mutations affecting the spliceosomal protein U2AF1 are commonly found in myelodysplastic syndromes (MDS) and secondary acute myeloid leukemia (sAML). We have generated mice that carry Credependent knock-in alleles of U2af1(S34F), the murine version of the most common mutant allele of U2AF1 encountered in human cancers. Cre-mediated recombination inmurine hematopoietic lineages caused changes in RNA splicing, as well as multilineage cytopenia, macrocytic anemia, decreased hematopoietic stem and progenitor cells, low-grade dysplasias, and impaired transplantability, but without lifespan shortening or leukemia development. In an attempt to identify U2af1(S34F)-cooperating changes that promote leukemogenesis, we combined U2af1(S34F) with Runx1 deficiency in mice and further treated the mice with a mutagen, N-ethyl-N-nitrosourea (ENU). Overall, 3 of 16 ENU-treated compound transgenic mice developed AML. However, AML did not arise in mice with other genotypes or without ENU treatment. Sequencing DNA from the three AMLs revealed somatic mutations homologous to those considered to be drivers of human AML, including predicted loss- or gain-of-function mutations in Tet2, Gata2, Idh1, and Ikzf1. However, the engineered U2af1(S34F) missense mutation reverted to WT in two of the three AML cases, implying that U2af1(S34F) is dispensable, or even selected against, once leukemia is established.
Clinical presentation and differential splicing of SRSF2, U2AF1 and SF3B1 mutations in patients with acute myeloid leukemia
Previous studies demonstrated that splicing factor mutations are recurrent events in hematopoietic malignancies with both clinical and functional implications. However, their aberrant splicing patterns in acute myeloid leukemia remain largely unexplored. In this study, we characterized mutations in SRSF2, U2AF1, and SF3B1, the most commonly mutated splicing factors. In our clinical analysis of 2678 patients, splicing factor mutations showed inferior relapse-free and overall survival, however, these mutations did not represent independent prognostic markers. RNA-sequencing of 246 and independent validation in 177 patients revealed an isoform expression profile which is highly characteristic for each individual mutation, with several isoforms showing a strong dysregulation. By establishing a custom differential splice junction usage pipeline, we accurately detected aberrant splicing in splicing factor mutated samples. A large proportion of differentially used junctions were novel, including several junctions in leukemia-associated genes. In SRSF2(P95H) mutants, we further explored the possibility of a cascading effect through the dysregulation of the splicing pathway. Furthermore, we observed a validated impact on overall survival for two junctions overused in SRSF2(P95H) mutants. We conclude that splicing factor mutations do not represent independent prognostic markers. However, they do have genome-wide consequences on gene splicing leading to dysregulated isoform expression of several genes.
Incomplete paralog compensation generates selective dependency on TRA2A in cancer
Paralogs often exhibit functional redundancy, allowing them to effectively compensate for each other’s loss. However, this buffering mechanism is frequently disrupted in cancer, exposing unique paralog-specific vulnerabilities. Here, we identify a selective dependency on the splicing factor TRA2A . We find that TRA2A and its paralog TRA2B are synthetic lethal partners that function as widespread and largely redundant activators of both alternative and constitutive splicing. While loss of TRA2A alone is typically neutral due to compensation by TRA2B , we discover that a subset of cancer cell lines are highly TRA2A -dependent. Upon TRA2A depletion, these cell lines exhibit a lack of paralog buffering specifically on shared splicing targets, leading to defects in mitosis and cell death. Notably, TRA2B overexpression rescues both the aberrant splicing and lethality associated with TRA2A loss, indicating that paralog compensation is dosage-sensitive. Together, these findings reveal a complex dosage-dependent relationship between paralogous splicing factors, and highlight how dysfunctional paralog buffering can create a selective dependency in cancer.
Intron retention and nuclear loss of SFPQ are molecular hallmarks of ALS
Mutations causing amyotrophic lateral sclerosis (ALS) strongly implicate ubiquitously expressed regulators of RNA processing. To understand the molecular impact of ALS-causing mutations on neuronal development and disease, we analysed transcriptomes during in vitro differentiation of motor neurons (MNs) from human control and patient-specific VCP mutant induced-pluripotent stem cells (iPSCs). We identify increased intron retention (IR) as a dominant feature of the splicing programme during early neural differentiation. Importantly, IR occurs prematurely in VCP mutant cultures compared with control counterparts. These aberrant IR events are also seen in independent RNAseq data sets from SOD1- and FUS-mutant MNs. The most significant IR is seen in the SFPQ transcript. The SFPQ protein binds extensively to its retained intron, exhibits lower nuclear abundance in VCP mutant cultures and is lost from nuclei of MNs in mouse models and human sporadic ALS. Collectively, we demonstrate SFPQ IR and nuclear loss as molecular hallmarks of familial and sporadic ALS. Intron retention (IR) can increase protein diversity and function, and yet unregulated IR may be detrimental to cellular health. This study shows that aberrant IR occurs in ALS and finds nuclear loss of an RNA-binding protein called SFPQ as a new molecular hallmark in this devastating condition.
Phase I First-in-Human Dose Escalation Study of the oral SF3B1 modulator H3B-8800 in myeloid neoplasms
We conducted a phase I clinical trial of H3B-8800, an oral small molecule that binds Splicing Factor 3B1 (SF3B1), in patients with MDS, CMML, or AML. Among 84 enrolled patients (42 MDS, 4 CMML and 38 AML), 62 were red blood cell (RBC) transfusion dependent at study entry. Dose escalation cohorts examined two once-daily dosing regimens: schedule I (5 days on/9 days off, range of doses studied 1–40 mg, n  = 65) and schedule II (21 days on/7 days off, 7–20 mg, n  = 19); 27 patients received treatment for ≥180 days. The most common treatment-related, treatment-emergent adverse events included diarrhea, nausea, fatigue, and vomiting. No complete or partial responses meeting IWG criteria were observed; however, RBC transfusion free intervals >56 days were observed in nine patients who were transfusion dependent at study entry (15%). Of 15 MDS patients with missense SF3B1 mutations, five experienced RBC transfusion independence (TI). Elevated pre-treatment expression of aberrant transcripts of Transmembrane Protein 14C ( TMEM14C ), an SF3B1 splicing target encoding a mitochondrial porphyrin transporter, was observed in MDS patients experiencing RBC TI. In summary, H3B-8800 treatment was associated with mostly low-grade TAEs and induced RBC TI in a biomarker-defined subset of MDS.
YTHDC1 mediates nuclear export of N 6 -methyladenosine methylated mRNAs
-methyladenosine (m A) is the most abundant internal modification of eukaryotic messenger RNA (mRNA) and plays critical roles in RNA biology. The function of this modification is mediated by m A-selective 'reader' proteins of the YTH family, which incorporate m A-modified mRNAs into pathways of RNA metabolism. Here, we show that the m A-binding protein YTHDC1 mediates export of methylated mRNA from the nucleus to the cytoplasm in HeLa cells. Knockdown of YTHDC1 results in an extended residence time for nuclear m A-containing mRNA, with an accumulation of transcripts in the nucleus and accompanying depletion within the cytoplasm. YTHDC1 interacts with the splicing factor and nuclear export adaptor protein SRSF3, and facilitates RNA binding to both SRSF3 and NXF1. This role for YTHDC1 expands the potential utility of chemical modification of mRNA, and supports an emerging paradigm of m A as a distinct biochemical entity for selective processing and metabolism of mammalian mRNAs.
The RNA-binding protein SFPQ preserves long-intron splicing and regulates circRNA biogenesis in mammals
Circular RNAs (circRNAs) represent an abundant and conserved entity of non-coding RNAs; however, the principles of biogenesis are currently not fully understood. Here, we identify two factors, splicing factor proline/glutamine rich (SFPQ) and non-POU domain-containing octamer-binding protein (NONO), to be enriched around circRNA loci. We observe a subclass of circRNAs, coined DALI circRNAs, with distal inverted Alu elements and long flanking introns to be highly deregulated upon SFPQ knockdown. Moreover, SFPQ depletion leads to increased intron retention with concomitant induction of cryptic splicing, premature transcription termination, and polyadenylation, particularly prevalent for long introns. Aberrant splicing in the upstream and downstream regions of circRNA producing exons are critical for shaping the circRNAome, and specifically, we identify missplicing in the immediate upstream region to be a conserved driver of circRNA biogenesis. Collectively, our data show that SFPQ plays an important role in maintaining intron integrity by ensuring accurate splicing of long introns, and disclose novel features governing Alu -independent circRNA production.