Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
55 result(s) for "spoofing interference"
Sort by:
Localization of GNSS Spoofing Interference Source Based on a Moving Array Antenna
GNSS spoofing interference utilizes falsified navigation signals to launch attacks on GNSS systems, posing a significant threat to applications that rely on GNSS signals for positioning, navigation, and time services. Therefore, achieving effective localization of the sources causing spoofing interference is crucial in ensuring the secure operation of GNSS. This article proposes a method for locating GNSS spoofing interference sources using a moving array antenna. Firstly, the proposed method utilizes the inherent characteristics of the double-differenced carrier phase from the deception signals received by the array antenna to effectively extract the spoofing signals. Subsequently, by moving the antenna array, the original carrier phase single-difference data of multiple observation points for deception signals are fused to provide a cost function for direct localization of spoofing interference, and a solution method for the cost function is designed. The proposed method addresses the challenge of extracting and localizing GNSS spoofing interference weak signals, effectively avoiding the data correlation of traditional two-step methods for DOA estimation parameters and ensuring the location accuracy of spoofing interference and the robustness of the method. The effectiveness of the proposed method has been validated through simulation experiments, and its adaptability to factors such as errors in carrier phase measurements has been examined. The method exhibits strong applicability and is well-suited for the hardware platform of the GNSS nulling antenna, thereby enabling it to possess simultaneous capabilities in both anti-interference and spoofing interference localization.
Two-Dimensional Directions Determination for GNSS Spoofing Source Based on MEMS-Based Dual-GNSS/INS Integration
Satellite navigation spoofing is a major challenge in the field of satellite/inertial integrated navigation security. To effectively enhance the anti-spoofing capability of a low-cost GNSS/MEMS-SINS integrated navigation system, this paper proposes a method integrating a dual-antenna global navigation satellite system (GNSS) and a micro-inertial measurement unit (MIMU) to determine the two-dimensional directions of spoofing signal sources. The proposed method evaluates whether the single-difference carrier-phase measurements conform to the corresponding directions given in ephemeris files and employs micro-inertial navigation technology to determine the two-dimensional directions of the signal source. Based on a set of short-baseline dual-station measurements, the accuracy of the proposed method in determining the two-dimensional azimuths of satellites in synchronous orbits is verified, and the deviation from the real value is evaluated. The experimental results show that the proposed method can effectively identify the spoofed satellite signals while providing high-precision direction information at three different distances: 100 m, 10 km, and 36,000 km. The two-dimensional angle errors do not exceed 0.2 rad, 0.05 rad, and 0.01 rad, respectively.
GNSS Spoofing Detection Using Q Channel Energy
Spoofing interference poses a significant challenge to the Global Navigation Satellite System (GNSS). To effectively combat intermediate spoofing signals, this paper presents an enhanced spoofing detection method based on abnormal energy of the quadrature (Q) channel correlators. The detailed principle of this detection method is introduced based on the received signal model under spoofing attack. The normalization parameter used in this method was the estimation of the noise floor. The performance of the proposed Q energy detector is validated through simulations, the Texas Spoofing Test Battery dataset and field tests. The results demonstrate that the proposed detector significantly enhances detection performance compared to signal quality monitoring methods, particularly in overpowered scenarios and dynamic scenarios. By increasing the detection probability in the presence of spoofing signals and decreasing the false alarm probability in the absence of spoofing signals, the proposed detector can better meet the requirements of practical applications.
Performance Analysis of GNSS/INS Loosely Coupled Integration Systems under Spoofing Attacks
The loosely coupled integration of Global Navigation Satellite System (GNSS) and Inertial Navigation System (INS) have been widely used to improve the accuracy, robustness and continuity of navigation services. However, the integration systems possibly affected by spoofing attacks, since integration algorithms without spoofing detection would feed autonomous INSs with incorrect compensations from the spoofed GNSSs. This paper theoretically analyzes and tests the performances of GNSS/INS loosely coupled integration systems with the classical position fusion and position/velocity fusion under typical meaconing (MEAC) and lift-of-aligned (LOA) spoofing attacks. Results show that the compensations of Inertial Measurement Unit (IMU) errors significantly increase under spoofing attacks. The compensations refer to the physical features of IMUs and their unreasonable increments likely result from the spoofing-induced inconsistency of INS and GNSS measurements. Specially, under MEAC attacks, the IMU error compensations in both the position-fusion-based system and position/velocity-fusion-based system increase obviously. Under LOA attacks, the unreasonable compensation increments are found from the position/velocity-fusion-based integration system. Then a detection method based on IMU error compensations is tested and the results show that, for the position/velocity-fusion-based integration system, it can detect both MEAC and LOA attacks with high probability using the IMU error compensations.
Research on Detection Technology of Spoofing under the Mixed Narrowband and Spoofing Interference
The global navigation satellite system has achieved great success in the civil and military fields and is an important resource for space-time information services. However, spoof interference has always been one of the main threats to the application security of satellite navigation receivers. In order to further improve the application security of satellite navigation receivers, this paper focuses on the application scenarios where narrowband and spoofing interference exist at the same time, studies the problem of spoofing interference detection under mixed interference conditions, then proposes a spoofing interference detection method based on the tracking loop identification curve. This method can effectively deal with the detection of spoofing interference under the conditions of narrowband interference and, at the same time, it can effectively detect the spoofing interference of gradual deviation. Simulation experiments verify the effectiveness of the spoofing interference detection method, based on the tracking loop discrimination curve. In typical jamming and spoofing scenarios, when the spoofing signal is about 7.5 m away from the real signal, the method used in this paper can achieve effective detection. The proposed detection method is of great significance for improving the anti-spoofing capability of satellite navigation receivers.
Satellite Navigation Spoofing Interference Detection and Direction Finding Based on Array Antenna
Satellite navigation signals are feeble when they reach the ground, so they are vulnerable to attacks from outside interference signals. By emitting spoofing interference signals similar to real satellite signals, spoofing interference can make receivers give wrong navigation, position, and time information, and it is challenging to detect. This seriously affects the safe use of GNSS; therefore, it is essential to identify spoofing interference signals quickly and accurately. In our study, we proposed a novel six-array spoofing-interference-monitoring array antenna, which achieved the detection and identification of spoofing interference sources by monitoring the relevant peaks and combining an airspace-trapping algorithm. Moreover, we quickly accomplished our search for the whole circumferential ambiguity by using long- and short-baseline algorithms, which can realize the high-precision detection of spoofing interference sources. To verify this method’s accuracy, we conducted outdoor real experiments using a special spoofing interference source, and our experimental results show that our proposed array antenna’s directional accuracy for spoofing interference signals is kept within 2°, showing high spoofing interference direction-finding capability.
Anti-Spoofing Method for Improving GNSS Security by Jointly Monitoring Pseudo-Range Difference and Pseudo-Range Sum Sequence Linearity
Spoofing interference is one of the most emerging threats to the Global Navigation Satellite System (GNSS); therefore, the research on anti-spoofing technology is of great significance to improving the security of GNSS. For single spoofing source interference, all the spoofing signals are broadcast from the same antenna. When the receiver is in motion, the pseudo-range of spoofing signals changes nonlinearly, while the difference between any two pseudo-ranges changes linearly. Authentic signals do not have this characteristic. On this basis, an anti-spoofing method is proposed by jointly monitoring the linearity of the pseudo-range difference (PRD) sequence and pseudo-range sum (PRS) sequence, which transforms the spoofing detection problem into the sequence linearity detection problem. In this paper, the model of PRD and PRS is derived, the hypothesis based on the linearity of PRD sequence and PRS sequence is given, and the detection performance of the method is evaluated. This method uses the sum of squares of errors (SSE) of linear fitting of the PRD sequence and PRS sequence to construct detection statistics, and has low computational complexity. Simulation results show that this method can effectively detect spoofing interference and distinguish spoofing signals from authentic signals.
Improved Spacecraft Authentication Method for Satellite Internet System Using Residue Codes
Low-orbit satellite internet (LOSI) expands the scope of the Industrial Internet of Things (IIoT) in the oil and gas industry (OGI) to include areas of the Far North. However, due to the large length of the communication channel, the number of threats and attacks increases. A special place among them is occupied by relay spoofing interference. In this case, an intruder satellite intercepts the control signal coming from the satellite (SC), delays it, and then imposes it on the receiver located on the unattended OGI object. This can lead to a disruption of the facility and even cause an environmental disaster. To prevent a spoofing attack, a satellite authentication method has been developed that uses a zero-knowledge authentication protocol (ZKAP). These protocols have high cryptographic strength without the use of encryption. However, they have a significant drawback. This is their low authentication speed, which is caused by calculations over a large module Q (128 bits or more). It is possible to reduce the time of determining the status of an SC by switching to parallel computing. To solve this problem, the paper proposes to use residue codes (RC). Addition, subtraction, and multiplication operations are performed in parallel in RC. Thus, a correct choice of a set of modules of RC allows for providing an operating range of calculations not less than the number Q. Therefore, the development of a spacecraft authentication method for the satellite internet system using RC that allows for reducing the authentication time is an urgent task.
Spoofing detection, classification and cancelation (SDCC) receiver architecture for a moving GNSS receiver
Spoofing in the form of transmitting fake GNSS signals is a deliberate attack that aims to mislead GNSS receivers into generating false position/time solutions. Current work on GNSS spoofing has mainly focused on spoofing detection where the proposed algorithms only indicate the presence of spoofing attacks. A new architecture consisting of spoofing detection, authentic/spoofing signal classification and spoofing cancelation known as spoofing detection, classification and cancelation for moving GNSS receivers is proposed. Predespreading and acquisition level analysis are performed to detect the presence of spoofing interference. The receiver motion is then used to classify the signals tracked into two groups, namely spoofing and authentic signal sets. A successive spoofing cancelation method is then developed to remove the spoofing signals from the raw digitized samples. It is shown that canceling out the spoofing signals removes multiple access interference and significantly improves the authentic signals’ detectability and tracking performance. Finally, after spoofing cancelation, authentic signals are acquired and tracked and their corresponding measurements are passed to a PVT engine for a reliable position solution. The proposed receiver architecture is analyzed in the acquisition, tracking and positioning layers.
Detecting GNSS Jamming and Spoofing on Android Devices
Global navigation satellite system (GNSS) location engines on Android devices provide location and navigation utility to billions of people worldwide. However, these location engines currently have very limited protection from threats to their position, navigation, and time (PNT) solutions. External sources of radio frequency interference (RFI) can render PNT information unusable. Even worse, false signals or spoofing can provide a false PNT solution to Android devices. To mitigate this, four detection methods were developed and evaluated using native location parameters within Android: Comparing the GNSS and network locations, checking the Android mock location flag, comparing the GNSS and Android system times, and observing the automatic gain control (AGC) and carrier-to-noise density (C/N0) signal metrics. These methods provide a powerful means to significantly increase the robustness of the Android GNSS-based PNT solution and are implemented in the GNSSAlarm Android application to demonstrate real-time jamming and spoofing detection.