Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
117 result(s) for "steaming treatment"
Sort by:
Preparation of MAZ-Type Zeolite with High Silica
The Si/Al molar ratio of MAZ aluminosilicate zeolite prepared by the direct hydrothermal method is generally less than five, thus giving rise to poor thermal and hydrothermal stability for this low-silica zeolite. With the purpose of enhancing the Si/Al molar ratio of MAZ zeolite, post-synthesized methods including acetic acid treatment and steaming treatment, as well as interzeolite transformation from FAU zeolite, were employed to prepare MAZ zeolite with high silica. It was found that steaming treatment was more effective in increasing the Si/Al molar ratio in comparison with acetic acid treatment, affording a maximum Si/Al molar ratio of 16.9 along with a preserved crystallinity of approximately 75%. Additionally, high-silica MAZ zeolite with a Si/Al molar ratio of up to 7.3 was also capable of being directly hydrothermally synthesized using interzeolite transformation from FAU zeolite.
Effect of a Steaming Treatment on the Alpha-Glucosidase Inhibitory Components in the Brown Alga Sargassum fusiforme
The brown alga Sargassum fusiforme (SF) is historically consumed as a food material in Japan. A steaming process is often required for SF products on the market due to their moderate hardness and astringent taste. This investigation aimed to elucidate the effect of steaming on the anti-diabetic activity of SF and its related chemical components. Acetone extracts of SF were prepared after it were steamed for 0, 1, 2, or 4 h (SF-0h, SF-1h, SF-3h, and SF-4h, respectively). Alpha-glucosidase inhibitory profiles of each SF extract were made based on activity-guided separation. The active fractions were collected and NMR was applied for a further chemical composition analysis. Our results suggested that total polyphenol levels decreased drastically after steaming, which resulted in a drop in α-glucosidase inhibitory activity. The fatty acid, pheophytin a, and pyropheophytin a contents were elevated significantly after steaming, which contributed to the majority of the activity of steamed SF (SF-1h). However, prolonging the steaming time did not significantly affect the activity of SF further since the content of free fatty acids in steamed SF (SF-2h and SF-4h) almost did not change with a longer time of steaming. Moreover, palmitic acid, 8-octadecenoic acid, and tetradecanoic acid were identified as the top three important fatty acids for the inhibition of α-glucosidase by steamed SF. Further molecular docking results revealed that these fatty acids could interact with residues of α-glucosidase via hydrogen bonds, salt bridges, and hydrophobic interactions. In conclusion, steaming altered the α-glucosidase inhibitory properties of SF by changing the contents of polyphenols, fatty acids, and chlorophyll derivatives.
A Facile and Effective Method for the Distribution of Mo/HZSM-5 Catalyst Active Centers
Post-steaming treatment of Mo/HZSM-5 catalysts results in more molybdenum species migrating into and residing in the HZSM-5 zeolite channels. This is confirmed by XRF and XPS measurements. 1H MAS NMR and 29Si MAS NMR also demonstrate that the number of free Brönsted acid sites decreases in the Mo/HZSM-5 catalysts that underwent post-steaming treatment, compared to untreated Mo/HZSM-5 catalysts. As a result, the deactivation rate constant (kd) on the Mo/HZSM-5 catalyst after post-steaming treatment for 0.5h is much smaller, and the catalyst therefore shows remarkable stability in the probe reaction of methane dehydro-aromatization. The results suggest that a more beneficial bi-functional balance between active Mo species for methane activation and acid sites for the following aromatization is developed over those Mo/HZSM-5 catalysts that have experienced post-steaming treatment for 0.5h, in comparison with the untreated Mo/HZSM-5 catalysts.
The impact of germination and thermal treatments on bioactive compounds of quinoa (Chenopodium quinoa Willd.) seeds
Quinoa is a highly nutritious crop with diverse applications in the food industry. The study assessed the impact of various processing techniques, including microwaving, boiling, roasting, steaming, flaking, and germination, on the crude protein content (CP), total phenolic content (TPC), antioxidant activity (AA), and 12 phenolic compounds in quinoa. CP was significantly affected by the heat treatments. Boiled quinoa flakes exhibited the highest average CP, boiling and roasting the lowest. Microwaving strongly enhanced the TPC and the content of six bioactive compounds (CFA, KMP, NAR, QCE, RUT, SA), while boiling and steaming had the most adverse effect. Germination improved the overall nutritional profile of quinoa. The most pronounced increase in the bioactive metabolites occurred between the third and fifth day of germination in a genotype-dependent manner. Six metabolites (NAR, SA, 4BA, IQ, PC, IH) were detected in germinated quinoa for the first time. The results emphasize the substantial influence of processing techniques and type of sample on quinoa nutritional quality and underscore the importance of proper consideration of those factors to obtain nutritionally optimal food products.
Processing effects on antioxidant, glucosinolate, and sulforaphane contents in broccoli and red cabbage
The objective of this study is to investigate the effects of three home cooking methods traditionally used all around the world (boiling, steaming and microwaving) in two vegetables: broccoli and red cabbage. Their effects on phytochemical content (i.e., polyphenols, ascorbic acid, anthocyanins, glucosinolates, and sulforaphane) and on total antioxidant capacity were investigated. Steaming and microwaving were explored to understand the effect of cooking time and/or cooking power. Nutrient and health-promoting compounds in broccoli and red cabbage are significantly affected by domestic cooking. The boiling seems to result in a very significant loss of nutritional compounds by leaching in cooking water. However, steaming and microwaving allowed the preservation of the higher quantities of bioactive compounds such as antioxidant compounds and glucosinolates. Microwave cooking significantly influenced the concentrations of bioactive compounds such as ascorbic acid, anthocyanins and sulforaphane. Sulforaphane content increased four or six times during the first minute of microwaving in the two vegetables.
Range of color changes of beech wood in the steaming process
Changes in color were evaluated for beech wood Fagus sylvatica L., caused by a steaming process using either a mixture of saturated steam and air or saturated water steam in the temperature range: t = 95 °C to 125 °C for a duration of T = 3 h to 12 h. The initially light white-gray color of beech wood with a yellow tint darkened during the thermal treatment process. It changed to a pale pink-brown and then to dark brown color. According to the visible changes in the color of beech wood obtained by the thermal treatment process with the human eye, , a color scale was proposed as a means to categorize the severity of treatment. The color ranged from a pale pink-brown color to a dark brown-red color depending on the value of the total color difference ∆E*.
Novel and Conventional Steam Blanching Impacts on Potato Starch Digestibility and Physicochemical Properties
Blanching plays a critical role in food production, and it is imperative to explore innovative techniques to overcome the limitations associated with conventional blanching methods. This study investigates the application of vacuum-steam pulse blanching (VSPB), an emerging technology, in the blanching of potatoes, comparing it to traditional steam blanching (SB). The evaluation was based on the potatoes’ browning enzyme inactivation, total phenols, antioxidation activity, starch digestibility, gelatinization degrees, and structural characteristics. The thermal and morphological analyses revealed that the blanching duration required for the browning enzyme inactivation totally gelatinized the potato starches. Prolonged blanching, whether using VSPB (with extended steaming cycles or lower vacuum pressure) or SB (for 180 seconds), decreased starch crystallinity and enhanced digestibility. VSPB effectively inactivated the browning enzyme while preserving total phenols and antioxidation activity in potatoes, yielding 39.14 mg GAE/100g fresh potato and 182.60 µmol TE/100 g fresh potato, respectively. In contrast, continuous steaming during SB for 60 s led to high enzyme activity, color difference, browning index, and FTIR absorption, reducing total phenols and antioxidant activity levels. Under optimum conditions (20 kPa vacuum pressure, three cycles, and 20 s steaming duration), VSPB increased the total phenol content and antioxidation activity, retained the potato structure and crystallinity, and recorded the lowest infrared absorbance level, providing an efficient scenario for potato blanching.
Thermal processing-induced changes in volatilome and metabolome of Brussels sprouts: focus on glucosinolate metabolism
This study aimed to investigate the influence of different thermal treatment methods (boiling, steaming) on the metabolome and volatilome of Brussels sprouts. Targeted, quantitative analysis of primary metabolites (amino acids and sugars), glucosinolates as well as untargeted analysis of volatile organic compounds (VOCs) were performed. The composition of primary metabolites was affected only by boiling, where the loss of nutrients was observed. Glucosinolate content increased after cooking, which can be explained by the loosening of the plant tissues and its better extractability. Most marked changes were noticed in the volatilome. Among the degradation products of glucosinolates, isothiocyanates were the main chemical group in the raw and boiled vegetable. In contrast, steaming favored the formation of nitriles. Another dominant group of VOCs were aldehydes, which were the most abundant in raw Brussels sprouts and their level significantly decreased after thermal treatment. It is well known that isothiocyanates are substances with widely proven bioactive properties. Therefore, their formation in the glucosinolate degradation process is favorable. Based on the obtained results, it was concluded that boiling seems to be the most beneficial form of Brussels sprouts’ processing.
Quality Aspects of Insects as Food—Nutritional, Sensory, and Related Concepts
In the search for another appealing source of future food to cover the increasing need for nutrients of a growing global population, this study reviewed the potential of insects as human food. Most previous reviews have dealt with insects as a group, making it difficult to evaluate each individual insect species as food because of the generalized data. This study assessed some common edible insects, but concentrated on mealworms. Insects, especially mealworms, have a similar or higher nutritional value than many conventional food sources. For example, the protein content of mealworm larvae is reported to be almost 50% of dry weight, while the fat content is about 30% of larval dry weight. Mealworms can be cooked by different methods, such as hot air drying, oven broiling, roasting, pan frying, deep frying, boiling, steaming, and microwaving. Oven broiling in particular gives a desirable aroma of steamed corn for consumers. Changes in the flavor, taste, and texture of mealworm products during storage have not been studied, but must be determined before mealworms can be used as a commercial food source. Factors controlling the shelf-life of mealworms, such as their packaging and storage, should be identified and considered with respect to the feasibility of using mealworms on a commercial scale.
Steam-Induced Aluminum Speciation and Catalytic Enhancement in ZSM-5 Zeolites
ZSM-5 zeolites with varying aluminum content were subjected to steam treatments of different severities by adjusting the temperature, duration, and water vapor pressure. The steamed samples were characterized using a range of analytical techniques. A quantitative assessment of the aluminum species—namely, tetrahedrally coordinated framework Al, dislodged framework Al, non-framework pentacoordinated Al, and non-framework hexacoordinated Al—was achieved through a combination of EDX analysis on Cs-exchanged materials and quantitative 27Al MAS NMR spectroscopy, including spectral simulation. Contrary to previous reports, the catalytic activity per framework Al site in unsteamed ZSM-5 increases with aluminum content at low Si/Al ratios, aligning with recently proposed medium effects. Notably, at the point of maximum activity enhancement due to steaming, equivalent amounts (1:1) of framework and dislodged framework Al—both in tetrahedral coordination—are observed. The maximum enhancement factor per framework Al site, for a given material and reaction, remains independent of the specific steaming conditions (temperature, time, and pressure). However, the degree of activity enhancement varies with the type of reaction: it is more pronounced for n-hexane cracking (α-test) than for m-xylene isomerization. This suggests that both catalyst modification and reaction characteristics contribute to the observed steam-induced activity enhancement. A synergistic interaction between Brønsted and Lewis acid sites appears to underpin these effects. One plausible mechanism involves the strengthening of Brønsted acidity in the presence of adjacent Lewis acid sites. This enhancement is expected to be more significant for n-hexane cracking, which demands higher acid strength compared to m-xylene isomerization. In cases of n-hexane cracking, the increased acid strength and the formation of olefins via reactions on Lewis acid sites may act cooperatively. Importantly, the dislodged framework Al species—tetrahedrally coordinated in the hydrated catalyst at ambient temperature and functioning as Lewis acid sites in the dehydrated zeolite under reaction conditions—are directly responsible for the observed enhancement in acid activity. The transformation of framework Al into dislodged framework Al species is reversible, as demonstrated by hydrothermal treatment of the steamed samples at 150–200 °C. Nonetheless, reinsertion of Al into the framework is not fully quantitative: a portion of the dislodged framework Al is irreversibly converted into non-framework penta- and hexacoordinated species during the hydrothermal process. Among these, non-framework pentacoordinate Al species may serve as counterions to balance the lattice charges associated with framework Al.