Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
9
result(s) for
"steer-by-wire (SbW) systems"
Sort by:
Steering-Angle Prediction and Controller Design Based on Improved YOLOv5 for Steering-by-Wire System
2024
A crucial role is played by steering-angle prediction in the control of autonomous vehicles (AVs). It mainly includes the prediction and control of the steering angle. However, the prediction accuracy and calculation efficiency of traditional YOLOv5 are limited. For the control of the steering angle, angular velocity is difficult to measure, and the angle control effect is affected by external disturbances and unknown friction. This paper proposes a lightweight steering angle prediction network model called YOLOv5Ms, based on YOLOv5, aiming to achieve accurate prediction while enhancing computational efficiency. Additionally, an adaptive output feedback control scheme with output constraints based on neural networks is proposed to regulate the predicted steering angle using the YOLOv5Ms algorithm effectively. Firstly, given that most lane-line data sets consist of simulated images and lack diversity, a novel lane data set derived from real roads is manually created to train the proposed network model. To improve real-time accuracy in steering-angle prediction and enhance effectiveness in steering control, we update the bounding box regression loss function with the generalized intersection over union (GIoU) to Shape-IoU_Loss as a better-converging regression loss function for bounding-box improvement. The YOLOv5Ms model achieves a 30.34% reduction in weight storage space while simultaneously improving accuracy by 7.38% compared to the YOLOv5s model. Furthermore, an adaptive output feedback control scheme with output constraints based on neural networks is introduced to regulate the predicted steering angle via YOLOv5Ms effectively. Moreover, utilizing the backstepping control method and introducing the Lyapunov barrier function enables us to design an adaptive neural network output feedback controller with output constraints. Finally, a strict stability analysis based on Lyapunov stability theory ensures the boundedness of all signals within the closed-loop system. Numerical simulations and experiments have shown that the proposed method provides a 39.16% better root mean squared error (RMSE) score than traditional backstepping control, and it achieves good estimation performance for angles, angular velocity, and unknown disturbances.
Journal Article
Event-Triggered Sliding Mode Control Using the Interval Type-2 Fuzzy Logic for Steer-by-Wire Systems with Actuator Fault
by
Tie, Ming
,
Wang, Yongfu
,
Li, Hongjuan
in
Actuators
,
Adaptive control
,
Artificial Intelligence
2022
This paper proposes a fuzzy modeling and event-triggered adaptive sliding mode control for steer-by-wire (SbW) systems subject to uncertain nonlinearity, time-varying perturbation, actuator fault, and limited communication resources. First, an interval type-2 fuzzy logic system (IT2 FLS) based on Lyapunov's adaptive scheme is built to model the uncertain nonlinearity. Then, an event-triggered adaptive sliding mode control method is designed to overcome the limited communication resources, time-varying perturbation, and actuator fault. This method eliminates the chattering phenomenon by utilizing nested adaptive technology and has practical finite-time stability. Theoretical analysis shows that the Zeno phenomenon is excluded. Finally, the validity of the methods is evaluated using simulations and vehicle experiments.
Journal Article
Handling and Stabilities Calculation and Analysis of Automobile Steer by Wire System Driven by Graphic User Interface
2011
Automobile steer by wire system (SBW) is a novel steering system. Firstly, the linear four degree of freedom dynamics model with steering torque as the input is built. Then the design ,simulation and multi discipline optimization parameterized platform of SBW is built based on Matlab Graphic User Interface, which can design and simulate steering system performances quickly. Effects of different parameters such as velocity, moment inertia of steering wheel and tire cornering stiffness on handling and stabilities are analyzed. Finally parameters are optimized to minimize the response total variance under torque input and improve the response under steering torque input.
Journal Article
Fast Finite-Time Composite Controller for Vehicle Steer-by-Wire Systems with Communication Delays
2024
The modern steer-by-wire (SBW) systems represent a revolutionary departure from traditional automotive designs, replacing mechanical linkages with electronic control mechanisms. However, the integration of such cutting-edge technologies is not without its challenges, and one critical aspect that demands thorough consideration is the presence of nonlinear dynamics and communication network time delays. Therefore, to handle the tracking error caused by the challenge of time delays and to overcome the parameter uncertainties and external perturbations, a robust fast finite-time composite controller (FFTCC) is proposed for improving the performance and safety of the SBW systems in the present article. By lumping the uncertainties, parameter variations, and exterior disturbance with input and output time delays as the generalized state, a scaling finite-time extended state observer (SFTESO) is constructed with a scaling gain for quickly estimating the unmeasured velocity and the generalized disturbances within a finite time. With the aid of the SFTESO, the robust FFTCC with the scaling gain is designed not only for ensuring finite-time convergence and strong robustness against time delays and disturbances but also for improving the speed of the convergence as a main novelty. Based on the Lyapunov theorem, the closed-loop stability of the overall SBW system is proven as a global uniform finite-time. Through examination across three specific scenarios, a comprehensive evaluation is aimed to assess the efficiency of the suggested controller strategy, compared with active disturbance rejection control (ADRC) and scaling ADRC (SADRC) methods across these three distinct driving scenarios. The simulated results have confirmed the merits of the proposed control in terms of a fast-tracking rate, small tracking error, and strong system robustness.
Journal Article
Sliding mode‐based active disturbance rejection control for vehicle steer‐by‐wire systems
by
Zheng, Jinchuan
,
Wang, Hai
,
Man, Zhihong
in
Accuracy
,
Active control
,
active disturbance rejection control
2018
This study presents a sliding mode‐based active disturbance rejection control (SMADRC) scheme for a steer‐by‐wire (SbW) system in road vehicles. First, a plant model that describes the mechanical dynamics of the SbW system is elaborated, where the viscous friction and the self‐aligning torque are regarded as external disturbances. Second, the design of SMADRC is exposited, in which a non‐linear extended state observer is utilised to estimate the non‐linearities existing in the plant model, and a sliding mode control component is used to cope with the effect of the non‐linearities and guarantee the control robustness against system uncertainties and varying road conditions. Finally, experimental results are shown to demonstrate the superiority of the designed SMADRC in comparison with a conventional sliding mode controller and a PD‐based active disturbance rejection controller (PDADRC).
Journal Article
Adaptive Active Disturbance Rejection Control for Vehicle Steer-by-Wire under Communication Time Delays
by
Man, Zhihong
,
Zheng, Yusai
,
Rsetam, Kamal
in
Acceleration
,
Active control
,
adaptive active disturbance rejection control (AADRC)
2024
In this paper, an adaptive active disturbance rejection control is newly designed for precise angular steering position tracking of the uncertain and nonlinear SBW system with time delay communications. The proposed adaptive active disturbance rejection control comprises the following two elements: (1) An adaptive extended state observer and (2) an adaptive state error feedback controller. The adaptive extended state observer with adaptive gains is employed for estimating the unmeasured velocity, acceleration, and compound disturbance which consists of system parameter uncertainties, nonlinearities, exterior disturbances, and time delay in which the observer gains are dynamically adjusted based on the estimation error to enhance estimation performances. Based on the accurate estimations of the adaptive extended state observer, the proposed adaptive full state error feedback controller is equipped with variable gains driven by the tracking error to develop control precision. The integration of the advantages of the adaptive extended state observer and the adaptive full state error feedback controller can improve the dynamic transient and static steady-state effectiveness, respectively. To assess the superior performance of the proposed adaptive active disturbance rejection control, a comparative analysis is conducted between the proposed control scheme and the classical active disturbance rejection control in two different cases. It is worth noting that the active disturbance rejection control serves as a benchmark for evaluating the performance of the proposed control approach. The results from the comparison studies executing two simulated cases validate the superiority of the suggested control, in which estimation, tracking response rate, and steering angle precision are greatly improved by the scheme proposed in this article.
Journal Article
Integrated Yaw Stability Control of Electric Vehicle Equipped with Front/Rear Steer-by-Wire Systems and Four In-Wheel Motors
by
Seo, Younghoon
,
Nam, Kanghyun
,
Cho, Kwanghyun
in
Bicycles
,
Computer simulation
,
Control algorithms
2022
This paper presents the integrated motion control method for an electric vehicle (EV) equipped with a front/rear steer-by-wire (SbW) system and four in-wheel motor (IWM). The proposed integrated motion control method aims to maintain stable cornering. To maintain vehicle agility and stability, the lateral force and yaw rate commands of the vehicle are generated by referring to the neutral steering characteristics. The driver’s driving force command, the lateral force command based on the bicycle model, and the yaw moment generated by the high-level controller are distributed into the driving force of each wheel and the lateral force of the front and rear wheels by the yaw moment distribution. Finally, the distributed forces are directly controlled by a low-level controller. To directly control the forces, a driving force observer and a lateral force observer were introduced via driving force estimation in the IWMs and rack force estimation in the SbW system. The control performance is verified through computer simulations.
Journal Article
Robust yaw stability control for electric vehicles based on active front steering control through a steer-by-wire system
2012
A robust yaw stability control design based on active front steering control is proposed for in-wheel-motored electric vehicles with a Steer-by-Wire (SbW) system. The proposed control system consists of an inner-loop controller (referred to in this paper as the steering angle-disturbance observer (SA-DOB), which rejects an input steering disturbance by feeding a compensation steering angle) and an outer-loop tracking controller (i.e., a PI-type tracking controller) to achieve control performance and stability. Because the model uncertainties, which include unmodeled high frequency dynamics and parameter variations, occur in a wide range of driving situations, a robust control design method is applied to the control system to simultaneously guarantee robust stability and robust performance of the control system. The proposed control algorithm was implemented in a CaSim model, which was designed to describe actual in-wheel-motored electric vehicles. The control performances of the proposed yaw stability control system are verified through computer simulations and experimental results using an experimental electric vehicle.
Journal Article
Evaluation of Deadband Effect in Steer-by-Wire Force Feedback System by Using Driving Simulator
2014
This paper presents an evaluation of dead band in force feedback which affects on driving precision with Steer-by-Wire System by using Driving Simulator. Dead band is considered as a zero zone of a relation between Force feedback torque and hand wheel angle. Experimental was designed to focus on dead band size from 0 to ±10 degrees of Force feedback model. The result has shown that the driver has the best driving precision with dead band size of ±4 to ±6 degrees.
Journal Article