Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
207
result(s) for
"step classification"
Sort by:
Research on Six-Axis Sensor-Based Step-Counting Algorithm for Grazing Sheep
2023
Step counting is an effective method to assess the activity level of grazing sheep. However, existing step-counting algorithms have limited adaptability to sheep walking patterns and fail to eliminate false step counts caused by abnormal behaviors. Therefore, this study proposed a step-counting algorithm based on behavior classification designed explicitly for grazing sheep. The algorithm utilized regional peak detection and peak-to-valley difference detection to identify running and leg-shaking behaviors in sheep. It distinguished leg shaking from brisk walking behaviors through variance feature analysis. Based on the recognition results, different step-counting strategies were employed. When running behavior was detected, the algorithm divided the sampling window by the baseline step frequency and multiplied it by a scaling factor to accurately calculate the number of steps for running. No step counting was performed for leg-shaking behavior. For other behaviors, such as slow and brisk walking, a window peak detection algorithm was used for step counting. Experimental results demonstrate a significant improvement in the accuracy of the proposed algorithm compared to the peak detection-based method. In addition, the experimental results demonstrated that the average calculation error of the proposed algorithm in this study was 6.244%, while the average error of the peak detection-based step-counting algorithm was 17.556%. This indicates a significant improvement in the accuracy of the proposed algorithm compared to the peak detection method.
Journal Article
Deep learning-based automatic surgical step recognition in intraoperative videos for transanal total mesorectal excision
2022
BackgroundDividing a surgical procedure into a sequence of identifiable and meaningful steps facilitates intraoperative video data acquisition and storage. These efforts are especially valuable for technically challenging procedures that require intraoperative video analysis, such as transanal total mesorectal excision (TaTME); however, manual video indexing is time-consuming. Thus, in this study, we constructed an annotated video dataset for TaTME with surgical step information and evaluated the performance of a deep learning model in recognizing the surgical steps in TaTME.MethodsThis was a single-institutional retrospective feasibility study. All TaTME intraoperative videos were divided into frames. Each frame was manually annotated as one of the following major steps: (1) purse-string closure; (2) full thickness transection of the rectal wall; (3) down-to-up dissection; (4) dissection after rendezvous; and (5) purse-string suture for stapled anastomosis. Steps 3 and 4 were each further classified into four sub-steps, specifically, for dissection of the anterior, posterior, right, and left planes. A convolutional neural network-based deep learning model, Xception, was utilized for the surgical step classification task.ResultsOur dataset containing 50 TaTME videos was randomly divided into two subsets for training and testing with 40 and 10 videos, respectively. The overall accuracy obtained for all classification steps was 93.2%. By contrast, when sub-step classification was included in the performance analysis, a mean accuracy (± standard deviation) of 78% (± 5%), with a maximum accuracy of 85%, was obtained.ConclusionsTo the best of our knowledge, this is the first study based on automatic surgical step classification for TaTME. Our deep learning model self-learned and recognized the classification steps in TaTME videos with high accuracy after training. Thus, our model can be applied to a system for intraoperative guidance or for postoperative video indexing and analysis in TaTME procedures.
Journal Article
Wood–Leaf Classification of Tree Point Cloud Based on Intensity and Geometric Information
2021
Terrestrial laser scanning (TLS) can obtain tree point clouds with high precision and high density. The efficient classification of wood points and leaf points is essential for the study of tree structural parameters and ecological characteristics. Using both intensity and geometric information, we present an automated wood–leaf classification with a three-step classification and wood point verification. The tree point cloud was classified into wood points and leaf points using intensity threshold, neighborhood density and voxelization successively, and was then verified. Twenty-four willow trees were scanned using the RIEGL VZ-400 scanner. Our results were compared with the manual classification results. To evaluate the classification accuracy, three indicators were introduced into the experiment: overall accuracy (OA), Kappa coefficient (Kappa), and Matthews correlation coefficient (MCC). The ranges of OA, Kappa, and MCC of our results were from 0.9167 to 0.9872, 0.7276 to 0.9191, and 0.7544 to 0.9211, respectively. The average values of OA, Kappa, and MCC were 0.9550, 0.8547, and 0.8627, respectively. The time costs of our method and another were also recorded to evaluate the efficiency. The average processing time was 1.4 s per million points for our method. The results show that our method represents a potential wood–leaf classification technique with the characteristics of automation, high speed, and good accuracy.
Journal Article
IART: Inertial Assistant Referee and Trainer for Race Walking
2020
This paper presents IART, a novel inertial wearable system for automatic detection of infringements and analysis of sports performance in race walking. IART algorithms are developed from raw inertial measurements collected by a single sensor located at the bottom of the vertebral column (L5–S1). Two novel parameters are developed to estimate infringements: loss of ground contact time and loss of ground contact step classification; three classic parameters are indeed used to estimate performance: step length ratio, step cadence, and smoothness. From these parameters, five biomechanical indices customized for elite athletes are derived. The experimental protocol consists of four repetitions of a straight path of 300 m on a long-paved road, performed by nine elite athletes. Over a total of 1620 steps (54 sequences of 30 steps each), the average accuracy of correct detection of loss of ground contact events is equal to 99%, whereas the correct classification of the infringement is equal to 87% for each step sequence, with a 92% of acceptable classifications. A great emphasis is dedicated on the user-centered development of IART: an intuitive radar chart representation is indeed developed to provide practical usability and interpretation of IART indices from the athletes, coaches, and referees perspectives. The results of IART, in terms of accuracy of its indices and usability from end-users, are encouraging for its usage as tool to support athletes and coaches in training and referees in real competitions.
Journal Article
Improved Class-Specific Codebook with Two-Step Classification for Scene-Level Classification of High Resolution Remote Sensing Images
2017
With the rapid advances in sensors of remote sensing satellites, a large number of highresolution images (HRIs) can be accessed every day. Land use classification using high-resolution images has become increasingly important as it can help to overcome the problems of haphazard, deteriorating environmental quality, loss of prime agricultural lands, and destruction of important wetlands, and so on. Recently, local feature with bag-of-words (BOW) representation has been successfully applied to land-use scene classification with HRIs. However, the BOW representation ignores information from scene labels, which is critical for scene-level land-use classification. Several algorithms have incorporated information from scene labels into BOW by calculating a class-specific codebook from the universal codebook and coding a testing image with a number of histograms. Those methods for mapping the BOW feature to some inaccurate class-specific codebooks may increase the classification error. To effectively solve this problem, we propose an improved class-specific codebook using kernel collaborative representation based classification (KCRC) combined with SPM approach and SVM classifier to classify the testing image in two steps. This model is robust for categories with similar backgrounds. On the standard Land use and Land Cover image dataset, the improved class-specific codebook achieves an average classification accuracy of 93% and demonstrates superiority over other state-of-the-art scene-level classification methods.
Journal Article
Mapping Vegetation at Species Level with High-Resolution Multispectral and Lidar Data Over a Large Spatial Area: A Case Study with Kudzu
by
Abidi, Mongi
,
Grant, Jerome
,
Li, Yingkui
in
BASIC BIOLOGICAL SCIENCES
,
case studies
,
coarse label
2020
Mapping vegetation species is critical to facilitate related quantitative assessment, and mapping invasive plants is important to enhance monitoring and management activities. Integrating high-resolution multispectral remote-sensing (RS) images and lidar (light detection and ranging) point clouds can provide robust features for vegetation mapping. However, using multiple sources of high-resolution RS data for vegetation mapping on a large spatial scale can be both computationally and sampling intensive. Here, we designed a two-step classification workflow to potentially decrease computational cost and sampling effort and to increase classification accuracy by integrating multispectral and lidar data in order to derive spectral, textural, and structural features for mapping target vegetation species. We used this workflow to classify kudzu, an aggressive invasive vine, in the entire Knox County (1362 km2) of Tennessee (U.S.). Object-based image analysis was conducted in the workflow. The first-step classification used 320 kudzu samples and extensive, coarsely labeled samples (based on national land cover) to generate an overprediction map of kudzu using random forest (RF). For the second step, 350 samples were randomly extracted from the overpredicted kudzu and labeled manually for the final prediction using RF and support vector machine (SVM). Computationally intensive features were only used for the second-step classification. SVM had constantly better accuracy than RF, and the producer’s accuracy, user’s accuracy, and Kappa for the SVM model on kudzu were 0.94, 0.96, and 0.90, respectively. SVM predicted 1010 kudzu patches covering 1.29 km2 in Knox County. We found the sample size of kudzu used for algorithm training impacted the accuracy and number of kudzu predicted. The proposed workflow could also improve sampling efficiency and specificity. Our workflow had much higher accuracy than the traditional method conducted in this research, and could be easily implemented to map kudzu in other regions as well as map other vegetation species.
Journal Article
Two-Step Classification with SVD Preprocessing of Distributed Massive Datasets in Apache Spark
by
Drakopoulos, Georgios
,
Vonitsanos, Gerasimos
,
Kanavos, Andreas
in
10v data
,
Algorithms
,
apache mllib
2020
At the dawn of the 10V or big data data era, there are a considerable number of sources such as smart phones, IoT devices, social media, smart city sensors, as well as the health care system, all of which constitute but a small portion of the data lakes feeding the entire big data ecosystem. This 10V data growth poses two primary challenges, namely storing and processing. Concerning the latter, new frameworks have been developed including distributed platforms such as the Hadoop ecosystem. Classification is a major machine learning task typically executed on distributed platforms and as a consequence many algorithmic techniques have been developed tailored for these platforms. This article extensively relies in two ways on classifiers implemented in MLlib, the main machine learning library for the Hadoop ecosystem. First, a vast number of classifiers is applied to two datasets, namely Higgs and PAMAP. Second, a two-step classification is ab ovo performed to the same datasets. Specifically, the singular value decomposition of the data matrix determines first a set of transformed attributes which in turn drive the classifiers of MLlib. The twofold purpose of the proposed architecture is to reduce complexity while maintaining a similar if not better level of the metrics of accuracy, recall, and F 1 . The intuition behind this approach stems from the engineering principle of breaking down complex problems to simpler and more manageable tasks. The experiments based on the same Spark cluster indicate that the proposed architecture outperforms the individual classifiers with respect to both complexity and the abovementioned metrics.
Journal Article
Two-Step Classification for Solving Data Imbalance and Anomalies in an Altman Z-Score-based Bankruptcy Prediction Model
2024
Differences in bankruptcy regulations with varying value parameters cause data anomalies when implemented in the Altman Z-Score model. Another common problem in bankruptcy predictions is imbalanced data; the number of companies that fall into the bankruptcy category is much smaller than those that do not. Therefore, a novel method was proposed to address data imbalance and anomalies in an Altman Z-Score-based bankruptcy prediction model. The proposed method employs a two-step classification controlled with data binning. Assumption values were used to set the proportion of distress and non-distress classes. Quartile calculation-based data binning is then used to ordinally rank the non-distress category into three classes. Furthermore, a two-step classification was performed using the Long-Short Term Memory (LSTM) method, followed by a rule-based classification method. The LSTM method predicts output in the form of one class representing the distress zone and three classes representing non-distress zone subcategories. The results are then processed using a rule-based classification to summarize the output into a two-class classification, where all data not in the distress zone class is part of the non-distress zone. The performance evaluation shows promising results, with outcomes closely matching the source bankruptcy data. These findings strengthen the evidence that the Altman Z-Score is a powerful tool for bankruptcy prediction and demonstrate that the proposed method can improve the Altman Z-Score model in handling differences in data value parameters.
Journal Article
Influence of a recessed step at the throat section of a supersonic nozzle
2018
The geometry of a planar converging-diverging nozzle operating with dry air in dilute gas conditions is modified by the introduction of a small recessed step at the throat section. Pressure measurements along the nozzle axis, schlieren visualisations and numerical simulations are performed to investigate the influence of the recessed step on the supersonic flow-field. In the experiments, the height of the recessed step is 0.1 mm and the nozzle height at the throat is 10 mm. Numerical simulations examine also 0.05 mm and 0.2 mm step heights. From the numerical simulations, the flow Mach number at the step location is 1.04 and the Reynolds number computed using the sonic conditions and the throat half-height is Re = 3.73 × 105. A perturbation wave pattern originates from the step, which results in a perturbation of the measured pressure profile close to the throat section. In the diverging portion, sufficiently far from the throat section, the pressure profile of the recessed-step nozzle matches the one measured in the clean configuration.
Journal Article
A machine learning model for classifying G-protein-coupled receptors as agonists or antagonists
2022
Background
G-protein coupled receptors (GPCRs) sense and transmit extracellular signals into the intracellular machinery by regulating G proteins. GPCR malfunctions are associated with a variety of signaling-related diseases, including cancer and diabetes; at least a third of the marketed drugs target GPCRs. Thus, characterization of their signaling and regulatory mechanisms is crucial for the development of effective drugs.
Results
In this study, we developed a machine learning model to identify GPCR agonists and antagonists. We designed two-step prediction models: the first model identified the ligands binding to GPCRs and the second model classified the ligands as agonists or antagonists. Using 990 selected subset features from 5270 molecular descriptors calculated from 4590 ligands deposited in two drug databases, our model classified non-ligands, agonists, and antagonists of GPCRs, and achieved an area under the ROC curve (AUC) of 0.795, sensitivity of 0.716, specificity of 0.744, and accuracy of 0.733. In addition, we verified that 70% (44 out of 63) of FDA-approved GPCR-targeting drugs were correctly classified into their respective groups.
Conclusions
Studies of ligand–GPCR interaction recognition are important for the characterization of drug action mechanisms. Our GPCR–ligand interaction prediction model can be employed in the pharmaceutical sciences for the efficient virtual screening of putative GPCR-binding agonists and antagonists.
Journal Article