Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectCountry Of PublicationPublisherSourceTarget AudienceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
59,187
result(s) for
"stochastic processes"
Sort by:
A Probabilistic Approach to Classical Solutions of the Master Equation for Large Population Equilibria
by
Chassagneux, Jean-François
,
Delarue, François
,
Crisan, Dan
in
Stochastic analysis
,
Stochastic control theory
2022
We analyze a class of nonlinear partial differential equations (PDEs) defined on
Brownian regularity for the Airy line ensemble, and multi-polymer watermelons in Brownian last passage percolation
The Airy line ensemble is a positive-integer indexed system of random continuous curves whose finite dimensional distributions are
given by the multi-line Airy process. It is a natural object in the KPZ universality class: for example, its highest curve, the
Airy
In this paper, we employ the Brownian Gibbs property to make a close
comparison between the Airy line ensemble’s curves after affine shift and Brownian bridge, proving the finiteness of a superpolynomially
growing moment bound on Radon-Nikodym derivatives.
We also determine the value of a natural exponent describing in Brownian last
passage percolation the decay in probability for the existence of several near geodesics that are disjoint except for their common
endpoints, where the notion of ‘near’ refers to a small deficit in scaled geodesic energy, with the parameter specifying this nearness
tending to zero.
To prove both results, we introduce a technique that may be useful elsewhere for finding upper bounds on
probabilities of events concerning random systems of curves enjoying the Brownian Gibbs property.
Several results in this article
play a fundamental role in a further study of Brownian last passage percolation in three companion papers (Hammond 2017a,b,c), in which
geodesic coalescence and geodesic energy profiles are investigated in scaled coordinates.
One-dimensional empirical measures, order statistics, and Kantorovich transport distances
2019
This work is devoted to the study of rates of convergence of the empirical measures \\mu_{n} = \\frac {1}{n} \\sum_{k=1}^n \\delta_{X_k}, n \\geq 1, over a sample (X_{k})_{k \\geq 1} of independent identically distributed real-valued random variables towards the common distribution \\mu in Kantorovich transport distances W_p. The focus is on finite range bounds on the expected Kantorovich distances \\mathbb{E}(W_{p}(\\mu_{n},\\mu )) or \\big [ \\mathbb{E}(W_{p}^p(\\mu_{n},\\mu )) \\big ]^1/p in terms of moments and analytic conditions on the measure \\mu and its distribution function. The study describes a variety of rates, from the standard one \\frac {1}{\\sqrt n} to slower rates, and both lower and upper-bounds on \\mathbb{E}(W_{p}(\\mu_{n},\\mu )) for fixed n in various instances. Order statistics, reduction to uniform samples and analysis of beta distributions, inverse distribution functions, log-concavity are main tools in the investigation. Two detailed appendices collect classical and some new facts on inverse distribution functions and beta distributions and their densities necessary to the investigation.
Dynamics of the Box-Ball System with Random Initial Conditions via Pitman’s Transformation
by
Tsujimoto, Satoshi
,
Croydon, David A.
,
Sasada, Makiko
in
Cellular automata
,
Ergodic theory
,
Pitman's measure of closeness
2023
The box-ball system (BBS), introduced by Takahashi and Satsuma in 1990, is a cellular automaton that exhibits solitonic behaviour. In
this article, we study the BBS when started from a random two-sided infinite particle configuration. For such a model, Ferrari et al.
recently showed the invariance in distribution of Bernoulli product measures with density strictly less than
Time-like Graphical Models
2019
The author studies continuous processes indexed by a special family of graphs. Processes indexed by vertices of graphs are known as probabilistic graphical models. In 2011, Burdzy and Pal proposed a continuous version of graphical models indexed by graphs with an embedded time structure-- so-called time-like graphs. The author extends the notion of time-like graphs and finds properties of processes indexed by them. In particular, the author solves the conjecture of uniqueness of the distribution for the process indexed by graphs with infinite number of vertices. The author provides a new result showing the stochastic heat equation as a limit of the sequence of natural Brownian motions on time-like graphs. In addition, the author's treatment of time-like graphical models reveals connections to Markov random fields, martingales indexed by directed sets and branching Markov processes.