Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
5
result(s) for
"stress gradient hypothesis (SGH)"
Sort by:
Experimental support of the stress-gradient hypothesis in herbivore–herbivore interactions
by
Mario Herrera
,
Fabien Anthelme
,
Olivier Dangles
in
Animals
,
Biodiversity
,
Biodiversity and Ecology
2013
The stress-gradient hypothesis (SGH) postulates an increase in the frequency of positive species interactions at increasing amounts of stress. While the SGH has been extensively tested in plant–plant interactions along abiotic stresses, it remains unclear whether this hypothesis could apply to higher trophic levels, such as herbivores, along biotic stress gradients.
To address this issue, we investigated how the interaction between two potato herbivores may change along a stress gradient created by an assortment of potato varieties with different tuber palatability. We used a tuber resistance trait as a measure for biotic stress and one herbivore as the facilitator to gain access to the tuber of the other herbivore.
Our experiment revealed a switch from neutral to positive interactions with increasing stress, confirming for the first time the predictions of the SGH for herbivores. Moreover, the intensity of facilitation decreased at high stress levels, suggesting that benefits by the facilitating species were dampened in the most stressful environment.
In view of the ubiquitous role played by positive interactions among herbivores, broadening our search image for facilitative effects among other plant enemies will allow a better awareness of the importance of the SGH in structuring plant communities.
Journal Article
importance of facilitation in the zonation of shrubs along a coastal salinity gradient
2011
Question: What are the interactive roles of abiotic stress and plant interactions in mediating the zonation of the shrub Tamarix chinensis along a salinity gradient? Location: Yellow River estuary (37°46′N, 119°09′E), northeast China. Methods: We surveyed the zonation of T. chinensis along a salinity gradient and quantified its salt tolerance using a pot experiment. In two field experiments, we transplanted T. chinensis seedlings into salt marsh, transitional zone and upland habitats, manipulated neighbours and quantified survivorship and biomass to examine neighbour effects. We also quantified vegetation effects on abiotic conditions in each zone. Results: Tamarix chinensis dominated the transitional zone, but was absent in upland and salt marsh habitats. In the pot experiment, T. chinensis grew well in freshwater treatments, but was inhibited by increasing salinity. Field experiments revealed that competition from neighbours limited T. chinensis growth in the uplands, while T. chinensis transplants were limited, with or without neighbours, in the salt marsh by high soil salinity. In the transitional zone, however, T. chinensis transplants performed better with than without neighbours. Vegetation removal significantly elevated soil salinity in the transitional zone, but not in other zones. Conclusions: Competition, facilitation and abiotic stress are all important in mediating the zonation of T. chinensis. Within its physiological stress tolerance range, or fundamental niche, it is limited by plant competition in low salinity habitats, and facilitated by neighbours in high salt stress habitats, but cannot survive in salt marshes having salinities above its salt stress tolerance limit. Our results have implications for understanding the relationships between facilitation and stress gradients.
Journal Article
Community Response to Extreme Drought (CRED)
by
Jacobs, Elin M.
,
Dukes, Jeffrey S.
,
Frank, Graham S.
in
biocenosis
,
botanical composition
,
Climate change
2019
As climate changes, many regions of the world are projected to experiencemore intense droughts, which can drive changes in plant community composition through a variety ofmechanisms.During drought, communitycomposition can respond directly to resource limitation, but biotic interactions modify the availability of these resources. Here, we develop the Community Response to Extreme Drought framework (CRED),which organizes the temporal progression ofmechanisms and plant– plant interactions that may lead to community changes during and after a drought. The CRED framework applies someprinciples of the stress gradient hypothesis (SGH), which proposes that the balance between competition and facilitation changeswith increasing stress. TheCRED framework suggests that net biotic interactions (NBI), the relative frequency and intensity of facilitative (+) and competitive (−) interactionsbetweenplants,will changetemporally,becomingmorepositiveunder increasing drought stress andmore negative as drought stress decreases. Furthermore,we suggest that rewettingrates affect the rate of resource amelioration, specifically water andnitrogen, altering productivity responses and the intensity and importance ofNBI, all of whichwill influence droughtinduced compositional changes. System-specific variables and the intensity of drought influence the strength of these interactions, and ultimately the system’s resistance and resilience to drought.
Journal Article
Facilitation as a ubiquitous driver of biodiversity
2014
Models describing the biotic drivers that create and maintain biological diversity within trophic levels have focused primarily on negative interactions (i.e. competition), leaving marginal room for positive interactions (i.e. facilitation). We show facilitation to be a ubiquitous driver of biodiversity by first noting that all species use resources and thus change the local biotic or abiotic conditions, altering the available multidimensional niches. This can cause a shift in local species composition, which can cause an increase in beta, and sometimes alpha, diversity.Weshow that these increases are ubiquitous across ecosystems. These positive effects on diversity occur via a broad host of disparate direct and indirect mechanisms. We identify and unify several of these facilitative mechanisms and discuss why it has been easy to underappreciate the importance of facilitation.Weshow that net positive effects have a long history of being considered ecologically or evolutionarily unstable, and we present recent evidence of its potential stability. Facilitation goes well beyond the common case of stress amelioration and it probably gains importance as community complexity increases. While biodiversity is, in part, created by species exploiting many niches, many niches are available to exploit only because species create them.
Journal Article
Positive interactions among native and invasive vascular plants in Antarctica: assessing the “nurse effect” at different spatial scales
by
Gallardo-Cerda, Jorge
,
Molina-Montenegro, Marco A
,
Pertierra, Luis R
in
Environmental conditions
,
Flowers & plants
,
Herbivores
2019
Antarctica is a stressful ecosystem with few vascular plants, an ideal system to test positive interactions. Here, plants such as Deschampsia antarctica could generate more suitable micro-environmental conditions for the establishment of other plants (facilitation). We examined the co-occurrence of vascular plant species in the Antarctic Peninsula and assessed the potential nurse effect by D. antarctica on the native Colobanthus quitensis and the invasive Poa annua. We also measured the ecophysiological performance and survival of C. quitensis within and outside the canopy of D. antarctica in two study sites differing in stress levels. In addition, a survival experiment was conducted with the invasive Poa annua individuals within and outside D. antarctica individuals. In sites where present, target species co-occurred with D. antarctica in both Shetland Islands and Antarctic Peninsula. In agreement with the stress gradient hypothesis, we found evidence of facilitation between vascular Antarctic plant species. Specifically, we found that D. antarctica facilitates the native C. quitensis and the invasive P. annua and that the effect is stronger in more stressful sites. Additionally, C. quitensis distribution is compatible with an influence of either direct or indirect facilitation from D. antarctica. Facilitation between vascular plants may play a role structuring Antarctic plant communities. Thus, distribution of native species should be considered when assessing the introduction and spread of invasive species. Also, our results together with those from previous studies showed that the type and magnitude of biotic interactions may change with time and can depend on the plant traits considered.
Journal Article