Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
33,210 result(s) for "structure-function relationship"
Sort by:
Structure-Functional Activity Relationship of β-Glucans From the Perspective of Immunomodulation: A Mini-Review
β-Glucans are a heterogeneous group of glucose polymers with a common structure comprising a main chain of β-(1,3) and/or β-(1,4)-glucopyranosyl units, along with side chains with various branches and lengths. β-Glucans initiate immune responses via immune cells, which become activated by the binding of the polymer to specific receptors. However, β-glucans from different sources also differ in their structure, conformation, physical properties, binding affinity to receptors, and thus biological functions. The mechanisms behind this are not fully understood. This mini-review provides a comprehensive and up-to-date commentary on the relationship between β-glucans' structure and function in relation to their use for immunomodulation.
Human Secretary Phospholipase A2 Mutations and Their Clinical Implications
Phospholipases A2 (PLA2s) belong to a superfamily of enzymes responsible for hydrolysis of the sn-2 fatty acids of membrane phospholipids to release arachidonic acid. PLA2s are the rate limiting enzyme for the downstream synthesis of prostaglandins and leukotrienes that are the main mediators of inflammation. The extracellular forms of this enzyme are also called the secretary phospholipase A2 (sPLA2) and are distributed extensively in most of the tissues in the human body. Their integral role in inflammatory pathways has been the primary reason for the extensive research on this molecule. The catalytic mechanism of sPLA2 is initiated by a histidine/aspartic acid/calcium complex within the active site. Though they are known to have certain housekeeping functions, certain mutations of sPLA2 are known to be implicated in causation of certain pathologies leading to diseases such as atherosclerosis, cardiovascular diseases, benign fleck retina, neurodegeneration, and asthma. We present an overview of human sPLA2 and a comprehensive compilation of the mutations that result in various disease phenotypes. The study not only helps to have a holistic understanding of human sPLA2 mutations and their clinical implications, but is also a useful platform to initiate research pertaining to structure–function relationship of the mutations to develop effective therapies for management of these diseases.
Recent Advances in Marine Algae Polysaccharides: Isolation, Structure, and Activities
Marine algae have attracted a great deal of interest as excellent sources of nutrients. Polysaccharides are the main components in marine algae, hence a great deal of attention has been directed at isolation and characterization of marine algae polysaccharides because of their numerous health benefits. In this review, extraction and purification approaches and chemico-physical properties of marine algae polysaccharides (MAPs) are summarized. The biological activities, which include immunomodulatory, antitumor, antiviral, antioxidant, and hypolipidemic, are also discussed. Additionally, structure-function relationships are analyzed and summarized. MAPs’ biological activities are closely correlated with their monosaccharide composition, molecular weights, linkage types, and chain conformation. In order to promote further exploitation and utilization of polysaccharides from marine algae for functional food and pharmaceutical areas, high efficiency, and low-cost polysaccharide extraction and purification methods, quality control, structure-function activity relationships, and specific mechanisms of MAPs activation need to be extensively investigated.
The Sequence and a Three-Dimensional Structural Analysis Reveal Substrate Specificity among Snake Venom Phosphodiesterases
(1) Background. Snake venom phosphodiesterases (SVPDEs) are among the least studied venom enzymes. In envenomation, they display various pathological effects, including induction of hypotension, inhibition of platelet aggregation, edema, and paralysis. Until now, there have been no 3D structural studies of these enzymes, thereby preventing structure–function analysis. To enable such investigations, the present work describes the model-based structural and functional characterization of a phosphodiesterase from Crotalus adamanteus venom, named PDE_Ca. (2) Methods. The PDE_Ca structure model was produced and validated using various software (model building: I-TESSER, MODELLER 9v19, Swiss-Model, and validation tools: PROCHECK, ERRAT, Molecular Dynamic Simulation, and Verif3D). (3) Results. The proposed model of the enzyme indicates that the 3D structure of PDE_Ca comprises four domains, a somatomedin B domain, a somatomedin B-like domain, an ectonucleotide pyrophosphatase domain, and a DNA/RNA non-specific domain. Sequence and structural analyses suggest that differences in length and composition among homologous snake venom sequences may account for their differences in substrate specificity. Other properties that may influence substrate specificity are the average volume and depth of the active site cavity. (4) Conclusion. Sequence comparisons indicate that SVPDEs exhibit high sequence identity but comparatively low identity with mammalian and bacterial PDEs.
Edges in brain networks: Contributions to models of structure and function
Network models describe the brain as sets of nodes and edges that represent its distributed organization. So far, most discoveries in network neuroscience have prioritized insights that highlight distinct groupings and specialized functional contributions of network nodes. Importantly, these functional contributions are determined and expressed by the web of their interrelationships, formed by network edges. Here, we underscore the important contributions made by brain network edges for understanding distributed brain organization. Different types of edges represent different types of relationships, including connectivity and similarity among nodes. Adopting a specific definition of edges can fundamentally alter how we analyze and interpret a brain network. Furthermore, edges can associate into collectives and higher order arrangements, describe time series, and form edge communities that provide insights into brain network topology complementary to the traditional node-centric perspective. Focusing on the edges, and the higher order or dynamic information they can provide, discloses previously underappreciated aspects of structural and functional network organization.
Structure–Function Relationship and Physiological Roles of Transient Receptor Potential Canonical (TRPC) 4 and 5 Channels
The study of the structure–function relationship of ion channels has been one of the most challenging goals in contemporary physiology. Revelation of the three-dimensional (3D) structure of ion channels has facilitated our understanding of many of the submolecular mechanisms inside ion channels, such as selective permeability, voltage dependency, agonist binding, and inter-subunit multimerization. Identifying the structure–function relationship of the ion channels is clinically important as well since only such knowledge can imbue potential therapeutics with practical possibilities. In a sense, recent advances in the understanding of the structure–relationship of transient receptor potential canonical (TRPC) channels look promising since human TRPC channels are calcium-permeable, non-selective cation channels expressed in many tissues such as the gastrointestinal (GI) tract, kidney, heart, vasculature, and brain. TRPC channels are known to regulate GI contractility and motility, pulmonary hypertension, right ventricular hypertrophy, podocyte injury, seizure, fear, anxiety-like behavior, and many others. In this article, we tried to elaborate recent findings of Cryo-EM (cryogenic-electron microscopy) based structural information of TRPC 4 and 5 channels and domain-specific functions of the channel, such as G-protein mediated activation mechanism, extracellular modification of the channel, homo/hetero-tetramerization, and pharmacological gating mechanisms.
The structural–functional connectome and the default mode network of the human brain
An emerging field of human brain imaging deals with the characterization of the connectome, a comprehensive global description of structural and functional connectivity within the human brain. However, the question of how functional and structural connectivity are related has not been fully answered yet. Here, we used different methods to estimate the connectivity between each voxel of the cerebral cortex based on functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) data in order to obtain observer-independent functional–structural connectomes of the human brain. Probabilistic fiber-tracking and a novel global fiber-tracking technique were used to measure structural connectivity whereas for functional connectivity, full and partial correlations between each voxel pair's fMRI-timecourses were calculated. For every voxel, two vectors consisting of functional and structural connectivity estimates to all other voxels in the cortex were correlated with each other. In this way, voxels structurally and functionally connected to similar regions within the rest of the brain could be identified. Areas forming parts of the ‘default mode network’ (DMN) showed the highest agreement of structure–function connectivity. Bilateral precuneal and inferior parietal regions were found using all applied techniques, whereas the global tracking algorithm additionally revealed bilateral medial prefrontal cortices and early visual areas. There were no significant differences between the results obtained from full and partial correlations. Our data suggests that the DMN is the functional brain network, which uses the most direct structural connections. Thus, the anatomical profile of the brain seems to shape its functional repertoire and the computation of the whole-brain functional–structural connectome appears to be a valuable method to characterize global brain connectivity within and between populations. •Structure–function connectivity relationship•Multi-modal data fusion•Voxel-wise connectivity analysis•Default mode network•Global fiber-tracking
Structural Characteristics, Antioxidant and Hypoglycemic Activities of Polysaccharide from Siraitia grosvenorii
The structural characterization, the in vitro antioxidant activity, and the hypoglycemic activity of a polysaccharide (SGP-1-1) isolated from Siraitia grosvenorii (SG) were studied in this paper. SGP-1-1, whose molecular weight is 19.037 kDa, consisted of Gal:Man:Glc in the molar ratio of 1:2.56:4.90. According to the results of methylation analysis, GC–MS, and NMR, HSQC was interpreted as a glucomannan with a backbone composed of 4)-β-D-Glcp-(1→4)-, α-D-Glcp-(1→4)-, and 4)-Manp-(1 residues. α-1,6 linked an α-D-Galp branch, and α-1,6 linked an α-D-Glcp branch. The study indirectly showed that SGP-1-1 has good in vitro hypoglycemic and antioxidant activities and that these activities may be related to the fact that the SGP-1-1’s monosaccharide composition (a higher proportion of Gal and Man) is the glycosidic-bond type (α- and β-glycosidic bonds). SGP-1-1 could be used as a potential antioxidant and hypoglycemic candidate for functional and nutritional food applications.
Structural insight into the individual variability architecture of the functional brain connectome
Human cognition and behaviors depend upon the brain's functional connectomes, which vary remarkably across individuals. However, whether and how the functional connectome individual variability architecture is structurally constrained remains largely unknown. Using tractography- and morphometry-based network models, we observed the spatial convergence of structural and functional connectome individual variability, with higher variability in heteromodal association regions and lower variability in primary regions. We demonstrated that functional variability is significantly predicted by a unifying structural variability pattern and that this prediction follows a primary-to-heteromodal hierarchical axis, with higher accuracy in primary regions and lower accuracy in heteromodal regions. We further decomposed group-level connectome variability patterns into individual unique contributions and uncovered the structural-functional correspondence that is associated with individual cognitive traits. These results advance our understanding of the structural basis of individual functional variability and suggest the importance of integrating multimodal connectome signatures for individual differences in cognition and behaviors.
From structure to function - a family portrait of plant subtilases
Subtilases (SBTs) are serine peptidases that are found in all three domains of life. As compared with homologs in other Eucarya, plant SBTs are more closely related to archaeal and bacterial SBTs, with which they share many biochemical and structural features. However, in the course of evolution, functional diversification led to the acquisition of novel, plant-specific functions, resulting in the present-day complexity of the plant SBT family. SBTs are much more numerous in plants than in any other organism, and include enzymes involved in general proteolysis as well as highly specific processing proteases. Most SBTs are targeted to the cell wall, where they contribute to the control of growth and development by regulating the properties of the cell wall and the activity of extracellular signaling molecules. Plant SBTs affect all stages of the life cycle as they contribute to embryogenesis, seed development and germination, cuticle formation and epidermal patterning, vascular development, programmed cell death, organ abscission, senescence, and plant responses to their biotic and abiotic environments. In this article we provide a comprehensive picture of SBT structure and function in plants.