Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
2,964 result(s) for "sugarcane bagasse"
Sort by:
Experimental study on fresh, mechanical properties and embodied carbon of concrete blended with sugarcane bagasse ash, metakaolin, and millet husk ash as ternary cementitious material
In recent years, the research direction is shifted toward introducing new supplementary cementitious materials (SCM) in lieu of in place of Portland cement (PC) in concrete as its production emits a lot of toxic gases in the atmosphere which causes environmental pollution and greenhouse gases. SCM such as sugarcane bagasse ash (SCBA), metakaolin (MK), and millet husk ash (MHA) are available in abundant quantities and considered as waste products. The primary aim of this experimental study is to investigate the effect of SCBA, MK, and MHA on the fresh and mechanical properties of concrete mixed which contributes to sustainable development. A total of 228 concrete specimens were prepared with targeted strength of 25MPa at 0.52 water-cement ratio and cured at 28 days. It is found that the compressive strength and split tensile strength were enhanced by 17% and 14.28%, respectively, at SCBA4MK4MHA4 (88% PC, 4% SCBA, 4% MK, and 4% MHA) as ternary cementitious material (TCM) in concrete after 28 days. Moreover, the permeability and density of concrete are found to be reduced when SCBA, MK, and MHA are used separately and combined as TCM increases in concrete at 28 days, respectively. The results showed that the workability of the fresh concrete was decreased with the increase of the percentage of SCBA, MK, and MHA separately and together as TCM in concrete.
Short-term analysis on the combined use of sugarcane bagasse ash and rice husk ash as supplementary cementitious material in concrete production
Globally, concrete is widely implemented as a construction material and is progressively being utilized because of growth in urbanization. However, limited resources and gradual depravity of the environment are forcing the research community to obtain alternative materials from large amounts of agro-industrial wastes as a partial replacement for ordinary cement. Cement is a main binding resource in concrete production. To reduce environmental problems associated with waste, this study considered the recycling of agro-industrial wastes, such as sugarcane bagasse ash (SCBA), rice husk ash (RHA), and others, into cement, and to finally bring sustainable and environmental-friendly concrete. This study considered 5%, 10%, and 15% of SBCA and RHA individually to replace ordinary Portland cement (OPC) by weight method then combined both ashes as 10%, 20%, and 30% to replace OPC to produce sustainable concrete. It was experimentally declared that the strength performance of concrete was reduced while utilizing SCBA and RHA individually and combined as supplementary cementitious material (SCM) at 7, 28, 56, and 90 days, respectively. Moreover, the initial and final setting time is increased as the quantity of replacement level of OPC with SCBA and RHA separates and together as SCM in the mixture. Based on experimental findings, it was concluded that the use of 5% of SCBA and 5% of RHA as cement replacement material individually or combined in concrete could provide appropriate results for structural applications in concrete.
Insight into the performance of lignin-containing cellulose nanofibers (LCNFs) via lignin content regulation by p-toluenesulfonic acid delignification
Residual lignin affects the physical and chemical performance of lignin-containing cellulose nanofibers (LCNFs). In this work, LCNFs were prepared from sugarcane bagasse powder (SBP) through p -toluenesulfonic acid ( p -TsOH) hydrolysis and the subsequent homogenization treatment. By adjusting the concentration of p -TsOH and hydrolysis temperature, LCNFs with lignin content of 4.69–17.53% were obtained, and the effects of lignin content on the chemical structure, crystallinity, size, hydrophobicity and thermal stability of LCNFs were systematically studied. With the increase of lignin content, the diameters and average water contact angles of LCNFs were increased (from 169.65 to 781.56 nm and 39.74–86.16°, respectively), while the crystallinities were decreased. The thermal stabilities of LCNFs were decided both by lignin content and the crystallinity. The by-product lignin nanoparticles (LNPs) with an average diameter of 50–500 nm were generated with LCNFs, further improving the resource utilization value of SBP. This study provides theoretical and experimental basis for the subsequent processing of films with different hydrophobic properties and materials with higher mechanical properties and thermal stability. Graphical abstract
Thermal and structural analysis of the reaction mechanisms during the preparation of activated carbon from sugarcane bagasse by urea phosphate activation
In this study, sugarcane bagasse was used to prepare urea phosphate activated carbons (UPACs) using a novel activator urea phosphate (UP) at three different temperatures (300 ℃, 550 ℃, and 800 ℃) to analyze the reaction mechanism during the pyrolysis process by Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy (Raman), elemental analysis, and thermogravimetric Fourier transform infrared spectroscopy-mass spectrometry (TG-FTIR-MS), to deduce the reaction mechanism of UP activation. Below 300 °C, the functional groups on the surface of sugarcane bagasse fibers undergo hydroxyl dehydration and oxidation reactions, and molecular chains were broken to produce H2O, CH4, CO2, H2, HCHO, and NH3 small molecule gas products. At 300–800 °C was the main temperature range for activation reactions, and the molecular structure gradually formed an ordered carbon network structure. Nitrogen-containing compounds were gradually transformed into graphite N and oxidized N as temperature increased and functional groups containing phosphorus underwent decomposition. Above 800 °C, the pyrolysis was basically complete. Phosphorus compounds were completely decomposed, with fewer macromolecular products and gaseous products being mainly H2O, CO2, CO, and HCHO.
Composition of sugar cane, energy cane, and sweet sorghum suitable for ethanol production at Louisiana sugar mills
A challenge facing the biofuel industry is to develop an economically viable and sustainable biorefinery. The existing potential biorefineries in Louisiana, raw sugar mills, operate only 3 months of the year. For year-round operation, they must adopt other feedstocks, besides sugar cane, as supplemental feedstocks. Energy cane and sweet sorghum have different harvest times, but can be processed for bio-ethanol using the same equipment. Juice of energy cane contains 9.8% fermentable sugars and that of sweet sorghum, 11.8%. Chemical composition of sugar cane bagasse was determined to be 42% cellulose, 25% hemicellulose, and 20% lignin, and that of energy cane was 43% cellulose, 24% hemicellulose, and 22% lignin. Sweet sorghum was 45% cellulose, 27% hemicellulose, and 21% lignin. Theoretical ethanol yields would be 3,609 kg per ha from sugar cane, 12,938 kg per ha from energy cane, and 5,804 kg per ha from sweet sorghum.
Cr(VI) adsorption performance and mechanism of an effective activated carbon prepared from bagasse with a one-step pyrolysis and ZnCl2 activation method
The utilization of bagasse as a raw material to prepare activated carbon adsorbents is an effective way to solve the water pollution problem, while achieving the goal of treating waste simultaneously. An effective activated carbon-based adsorbent was prepared from sugar cane bagasse with a one-step method of pyrolysis and ZnCl 2 activation for efficient Cr(VI) removal from water. Morphology, physicochemical properties and structure of the adsorbent samples were studied by Scanning Electron Microscope, Energy Dispersive Spectroscopy, X-ray Diffraction, N 2 adsorption and desorption, Fourier Transform infrared spectroscopy and X-ray Photoelectron Spectroscopy. The batch and fixed bed adsorption experiments were adopted to confirm the one-step preparation of pyrolysis and ZnCl 2 during the activation process and to investigate the adsorption mechanism of Cr(VI). The maximum adsorption capacity was 80.880 mg g −1 , while the adsorption behavior fitted better with Freundlich equation and pseudo-second-order kinetics. These results confirmed that chemical adsorption is the strongest adsorption interaction during the adsorbing process of Cr(VI), and the adsorbents could effectively capture Cr(VI) to form monodentate and bidentate complexes. Graphical abstract
Modification of sugarcane bagasse as a novel lignocellulosic biomass adsorbent nanocomposite to improve adsorption of methylene blue
Herein, fabrication of a novel eco-friendly and effective biosorbent (SCB-GO-PAA) nanocomposite were investigated by modification of sugarcane bagasse (SCB) as lignocellulosic biomass with graphene oxide (GO) and polyacrylic acid (PAA) using homogenizer as a new technique to prepare (SCB-GO-PAA) nanocomposite. The fabricated materials were characterized using SEM, FTIR, TGA, and XRD, and were tested to adsorb methylene blue (MB) dye from aqueous solution. Adsorption parameters were studied to investigate the optimum conditions that achieve the higher adsorption capacity. The adsorption processes were carried out according to Langmuir isothermal model and pseudo-second-order kinetic model with maximum sorption capacity of MB-dye by SCB, SCB-GO, and SCB-GO-PAA nanocomposite of 143.56, 265.85, and 543.28 mgg−1, respectively. The results revealed that the fabricated biosorbents are promising materials with considerable adsorption capacity comparing to other novel adsorbents. Also, this eco-friendly and effective bioadsorbent can be utilized on large scale to remove MB-dye from various types of wastewater.
Enhanced xylitol production using non-detoxified xylose rich pre-hydrolysate from sugarcane bagasse by newly isolated Pichia fermentans
Background Integrated management of hemicellulosic fraction and its economical transformation to value-added products is the key driver towards sustainable lignocellulosic biorefineries. In this aspect, microbial cell factories are harnessed for the sustainable production of commercially viable biochemicals by valorising C5 and C6 sugars generated from agro-industrial waste. However, in the terrestrial ecosystem, microbial systems can efficiently consume glucose. On the contrary, pentose sugars are less preferred carbon source as most of the microbes lack metabolic pathway for their utilization. The effective utilization of both pentose and hexose sugars is key for economical biorefinery. Results Bioprospecting the food waste and selective enrichment on xylose-rich medium led to screening and isolation of yeast which was phylogenetically identified as Pichia fermentans. The newly isolated xylose assimilating yeast was explored for xylitol production. The wild type strain robustly grew on xylose and produced xylitol with > 40% conversion yield. Chemical mutagenesis of isolated yeast with ethyl methanesulphonate (EMS) yielded seven mutants. The mutant obtained after 15 min EMS exposure, exhibited best xylose bioconversion efficiency. This mutant under shake flask conditions produced maximum xylitol titer and yield of 34.0 g/L and 0.68 g/g, respectively. However, under the same conditions, the control wild type strain accumulated 27.0 g/L xylitol with a conversion yield of 0.45 g/g. Improved performance of the mutant was attributed to 34.6% activity enhancement in xylose reductase with simultaneous reduction of xylitol dehydrogenase activity by 22.9%. Later, the culture medium was optimized using statistical design and validated at shake flask and bioreactor level. Bioreactor studies affirmed the competence of the mutant for xylitol accumulation. The xylitol titer and yield obtained with pure xylose were 98.9 g/L and 0.67 g/g, respectively. In comparison, xylitol produced using non-detoxified xylose rich pre-hydrolysate from sugarcane bagasse was 79.0 g/L with an overall yield of 0.54 g/g. Conclusion This study demonstrates the potential of newly isolated P. fermentans in successfully valorising the hemicellulosic fraction for the sustainable xylitol production.
Degradation of methylene blue by intimate coupling photocatalysis and biodegradation with bagasse cellulose composite carrier
A novel highly efficient technology, intimate coupling photocatalysis and biodegradation (ICPB) for the treatment of refractory organic pollutants was introduced, and the carrier in ICPB based on sugarcane bagasse cellulose (SBC) was prepared. The SBC–TiO2 carrier produced was characterized using spectroscopy, microscopy, and diffraction techniques. The SEM image showed a rough and porous structure of the carrier, while as the EDS, XPS and XRD indicated that TiO2 was successfully added into the carrier, which retained its original crystal structure and provided the photocatalytic activity. The combined process of photocatalysis and biodegradation was much more efficient than a single process alone. The success in preparing bagasse cellulose based carrier in this study provided a significant contribution towards the development of a green and efficient technology system for the treatment of refractory organic matter.Graphic abstract
The potential of the newly isolated thermotolerant yeast Pichia kudriavzevii RZ8-1 for high-temperature ethanol production
High potential, thermotolerant, ethanol-producing yeasts were successfully isolated in this study. Based on molecular identification and phylogenetic analysis, the isolated thermotolerant yeasts were clustered in the genera of Pichia kudriavzevii, Candida tropicalis, Candida orthopsilosis, Candida glabrata and Kodamea ohmeri. A comparative study of ethanol production using 160 g/L glucose as a substrate revealed several yeast strains that could produce high ethanol concentrations at high temperatures. When sugarcane bagasse (SCB) hydrolysate containing 85 g/L glucose was used as a substrate, the yeast strain designated P. kudriavzevii RZ8-1 exhibited the highest ethanol concentrations of 35.51 g/L and 33.84 g/L at 37 °C and 40 °C, respectively. It also exhibited multi-stress tolerance, such as heat, ethanol and acetic acid tolerance. During ethanol fermentation at high temperature (42 °C), genes encoding heat shock proteins (ssq1 and hsp90), alcohol dehydrogenases (adh1, adh2, adh3 and adh4) and glyceraldehyde-3-phosphate dehydrogenase (tdh2) were up-regulated, suggesting that these genes might play a crucial role in the thermotolerance ability of P. kudriavzevii RZ8-1 under heat stress. These findings suggest that the growth and ethanol fermentation activities of this organism under heat stress were restricted to the expression of genes involved not only in heat shock response but also in the ethanol production pathway.