Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
2 result(s) for "sum-form, product-form, and composite utility functions"
Sort by:
Defense Strategies for Asymmetric Networked Systems with Discrete Components
We consider infrastructures consisting of a network of systems, each composed of discrete components. The network provides the vital connectivity between the systems and hence plays a critical, asymmetric role in the infrastructure operations. The individual components of the systems can be attacked by cyber and physical means and can be appropriately reinforced to withstand these attacks. We formulate the problem of ensuring the infrastructure performance as a game between an attacker and a provider, who choose the numbers of the components of the systems and network to attack and reinforce, respectively. The costs and benefits of attacks and reinforcements are characterized using the sum-form, product-form and composite utility functions, each composed of a survival probability term and a component cost term. We present a two-level characterization of the correlations within the infrastructure: (i) the aggregate failure correlation function specifies the infrastructure failure probability given the failure of an individual system or network, and (ii) the survival probabilities of the systems and network satisfy first-order differential conditions that capture the component-level correlations using multiplier functions. We derive Nash equilibrium conditions that provide expressions for individual system survival probabilities and also the expected infrastructure capacity specified by the total number of operational components. We apply these results to derive and analyze defense strategies for distributed cloud computing infrastructures using cyber-physical models.
Cyber-physical correlation effects in defense games for large discrete infrastructures
In certain critical infrastructures, correlations between cyber and physical components can be exploited to launch strategic attacks, so that disruptions to one component may affect others and possibly the entire infrastructure. Such correlations must be explicitly taken into account in ensuring the survival of the infrastructure. For large discrete infrastructures characterized by the number of cyber and physical components, we characterize the cyber-physical interactions at two levels: (i) the cyber-physical failure correlation function specifies the conditional survival probability of the cyber sub-infrastructure given that of the physical sub-infrastructure (both specified by their marginal probabilities), and (ii) individual survival probabilities of both sub-infrastructures are characterized by first-order differential conditions expressed in terms of their multiplier functions. We formulate an abstract problem of ensuring the survival probability of a cyber-physical infrastructure with discrete components as a game between the provider and attacker, whose utility functions are composed of infrastructure survival probability terms and cost terms, both expressed in terms of the number of components attacked and reinforced. We derive Nash equilibrium conditions and sensitivity functions that highlight the dependence of infrastructure survival probability on cost terms, correlation functions, multiplier functions, and sub-infrastructure survival probabilities. We apply these analytical results to characterize the defense postures of simplified models of metro systems, cloud computing infrastructures, and smart power grids.