Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
3,148 result(s) for "surface reflectance"
Sort by:
Method of Validating Satellite Surface Reflectance Product Using Empirical Line Method
Atmospherically corrected surface reflectance (SR) products are used for reliable monitoring of land surfaces and are the standard products of Landsat sensors. Due to increased demand for SR products, a need exists to verify that the L2C2 (Level-2 Collection-2) SR products are precise and accurate. The Level-2 Collection 2 (L2C2) SR Product has processed satellite imagery data that correct for atmospheric effects such as absorption and scattering, providing a more accurate representation of Earth’s surface. The validation of SR products using ground truth measurement is essential. This study aims to develop and evaluate a validation methodology for satellite SR products. Thus, the Empirical Line Method (ELM) is used here for atmospheric validation of remotely sensed data. Validation is performed using the SR derived from ELM tied to ground truth measurement. Absolute surface reflectance models of Algodones Dunes and the Salton Sea located in North America Sonoran Desert are developed to extend the temporally limited ground truth measurements. This model can give ground truth reflectance in any time frame independent of time constraints. The result of the absolute surface reflectance model of Algodones Dunes indicates that the model predicts the response of Algodones Dunes with an average accuracy of 0.0041 and precision of 0.0063 and gives ground measurements across all multispectral between 350 and 2500 nm. For the Salton Sea, the model predicts the response of the Salton Sea with mean absolute error (MAE) of 0.0035 and gives ground measurements across all multispectral between 350 and 2500 nm. The ELM generates atmospheric coefficients (gain and bias), which are applied to an image to obtain SR. Validation results indicated that for L9-OLI-2, L8-OLI, and L5-TM-SR products, the RMSE range is 0.0019 to 0.0106, 0.0019 to 0.0148 and 0.0026 to 0.0045 reflectance unit, respectively, and accuracy is within 0.0038, 0.0022, and 0.0055 reflectance unit across all spectral bands of L9, L8, and L5, respectively. On average, the validation result showed a strong linear relation between the L2C2 SR products and ELM SR within 0.5 to 1 reflectance units. These results demonstrate the high accuracy and reliability of the L2C2 SR product, providing valuable information for a wide range of remote sensing applications, including land cover and land use mapping, vegetation monitoring, and climate change studies.
A 30+ Year AVHRR Land Surface Reflectance Climate Data Record and Its Application to Wheat Yield Monitoring
The Advanced Very High Resolution Radiometer (AVHRR) sensor provides a unique global remote sensing dataset that ranges from the 1980's to the present. Over the years, several efforts have been made on the calibration of the different instruments to establish a consistent land surface reflectance time-series and to augment the AVHRR data record with data from other sensors such as the Moderate Resolution Imaging Spectroradiometer (MODIS). In this paper, we present a summary of all the corrections applied to the AVHRR Surface Reflectance and NDVI Version 4 Product, developed in the framework of the National Oceanic and Atmospheric Administration (NOAA) Climate Data Record (CDR) program. These corrections result from assessment of the geo-location, improvement of the cloud masking and calibration monitoring. Additionally, we evaluate the performance of the surface reflectance over the AERONET sites by a cross-comparison with MODIS, which is an already validated product, and evaluation of a downstream Leaf Area Index (LAI) product. We demonstrate the utility of this long time-series by estimating the winter wheat yield over the USA. The methods developed by [1] and [2] are applied to both the MODIS and AVHRR data. Comparison of the results from both sensors during the MODIS-era shows the consistency of the dataset with similar errors of 10%. When applying the methods to AVHRR historical data from the 1980's, the results have errors equivalent to those derived from MODIS.
Lightdrum—Portable Light Stage for Accurate BTF Measurement on Site
We propose a miniaturised light stage for measuring the bidirectional reflectance distribution function (BRDF) and the bidirectional texture function (BTF) of surfaces on site in real world application scenarios. The main principle of our lightweight BTF acquisition gantry is a compact hemispherical skeleton with cameras along the meridian and with light emitting diode (LED) modules shining light onto a sample surface. The proposed device is portable and achieves a high speed of measurement while maintaining high degree of accuracy. While the positions of the LEDs are fixed on the hemisphere, the cameras allow us to cover the range of the zenith angle from 0 ∘ to 75 ∘ and by rotating the cameras along the axis of the hemisphere we can cover all possible camera directions. This allows us to take measurements with almost the same quality as existing stationary BTF gantries. Two degrees of freedom can be set arbitrarily for measurements and the other two degrees of freedom are fixed, which provides a tradeoff between accuracy of measurements and practical applicability. Assuming that a measured sample is locally flat and spatially accessible, we can set the correct perpendicular direction against the measured sample by means of an auto-collimator prior to measuring. Further, we have designed and used a marker sticker method to allow for the easy rectification and alignment of acquired images during data processing. We show the results of our approach by images rendered for 36 measured material samples.
Inter-Comparison of ASTER and MODIS Surface Reflectance and Vegetation Index Products for Synergistic Applications to Natural Resource Monitoring
Synergistic applications of multi-resolution satellite data have been of a great interest among user communities for the development of an improved and more effective operational monitoring system of natural resources, including vegetation and soil. In this study, we conducted an inter-comparison of two remote sensing products, namely, visible/near-infrared surface reflectances and spectral vegetation indices (VIs), from the high resolution Advanced Thermal Emission and Reflection Radiometer (ASTER) (15 m) and lower resolution Moderate Resolution Imaging Spectroradiometer (MODIS) (250 m – 500 m) sensors onboard the Terra platform. Our analysis was aimed at understanding the degree of radiometric compatibility between the two sensors’ products due to sensor spectral bandpasses and product generation algorithms. Multiple pairs of ASTER and MODIS standard surface reflectance products were obtained at randomly-selected, globally-distributed locations, from which two types of VIs were computed: the normalized difference vegetation index and the enhanced vegetation indices with and without a blue band. Our results showed that these surface reflectance products and the derived VIs compared well between the two sensors at a global scale, but subject to systematic differences, of which magnitudes varied among scene pairs. An independent assessment of the accuracy of ASTER and MODIS standard products, in which “in-house” surface reflectances were obtained using in situ Aeronet atmospheric data for comparison, suggested that the performance of the ASTER atmospheric correction algorithm may be variable, reducing overall quality of its standard reflectance product. Atmospheric aerosols, which were not corrected for in the ASTER algorithm, were found not to impact the quality of the derived reflectances. Further investigation is needed to identify the sources of inconsistent atmospheric correction results associated with the ASTER algorithm, including additional quality assessments of the ASTER and MODIS products with other atmospheric radiative transfer codes.
A Dark Target Algorithm for the GOSAT TANSO-CAI Sensor in Aerosol Optical Depth Retrieval over Land
Cloud and Aerosol Imager (CAI) onboard the Greenhouse Gases Observing Satellite (GOSAT) is a multi-band sensor designed to observe and acquire information on clouds and aerosols. In order to retrieve aerosol optical depth (AOD) over land from the CAI sensor, a Dark Target (DT) algorithm for GOSAT CAI was developed based on the strategy of the Moderate Resolution Imaging Spectroradiometer (MODIS) DT algorithm. When retrieving AOD from satellite platforms, determining surface contributions is a major challenge. In the MODIS DT algorithm, surface signals in the visible wavelengths are estimated based on the relationships between visible channels and shortwave infrared (SWIR) near the 2.1 µm channel. However, the CAI only has a 1.6 µm band to cover the SWIR wavelengths. To resolve the difficulties in determining surface reflectance caused by the lack of 2.1 μm band data, we attempted to analyze the relationship between reflectance at 1.6 µm and at 2.1 µm. We did this using the MODIS surface reflectance product and then connecting the reflectances at 1.6 µm and the visible bands based on the empirical relationship between reflectances at 2.1 µm and the visible bands. We found that the reflectance relationship between 1.6 µm and 2.1 µm is typically dependent on the vegetation conditions, and that reflectances at 2.1 µm can be parameterized as a function of 1.6 µm reflectance and the Vegetation Index (VI). Based on our experimental results, an Aerosol Free Vegetation Index (AFRI2.1)-based regression function connecting the 1.6 µm and 2.1 µm bands was summarized. Under light aerosol loading (AOD at 0.55 µm < 0.1), the 2.1 µm reflectance derived by our method has an extremely high correlation with the true 2.1 µm reflectance (r-value = 0.928). Similar to the MODIS DT algorithms (Collection 5 and Collection 6), a CAI-applicable approach that uses AFRI2.1 and the scattering angle to account for the visible surface signals was proposed. It was then applied to the CAI sensor for AOD retrieval; the retrievals were validated by comparisons with ground-level measurements from Aerosol Robotic Network (AERONET) sites. Validations show that retrievals from the CAI have high agreement with the AERONET measurements, with an r-value of 0.922, and 69.2% of the AOD retrieved data falling within the expected error envelope of ± (0.1 + 15% AODAERONET).
Landsat Analysis Ready Data for Global Land Cover and Land Cover Change Mapping
The multi-decadal Landsat data record is a unique tool for global land cover and land use change analysis. However, the large volume of the Landsat image archive and inconsistent coverage of clear-sky observations hamper land cover monitoring at large geographic extent. Here, we present a consistently processed and temporally aggregated Landsat Analysis Ready Data produced by the Global Land Analysis and Discovery team at the University of Maryland (GLAD ARD) suitable for national to global empirical land cover mapping and change detection. The GLAD ARD represent a 16-day time-series of tiled Landsat normalized surface reflectance from 1997 to present, updated annually, and designed for land cover monitoring at global to local scales. A set of tools for multi-temporal data processing and characterization using machine learning provided with GLAD ARD serves as an end-to-end solution for Landsat-based natural resource assessment and monitoring. The GLAD ARD data and tools have been implemented at the national, regional, and global extent for water, forest, and crop mapping. The GLAD ARD data and tools are available at the GLAD website for free access.
RadCalNet: A Radiometric Calibration Network for Earth Observing Imagers Operating in the Visible to Shortwave Infrared Spectral Range
Vicarious calibration approaches using in situ measurements saw first use in the early 1980s and have since improved to keep pace with the evolution of the radiometric requirements of the sensors that are being calibrated. The advantage of in situ measurements for vicarious calibration is that they can be carried out with traceable and quantifiable accuracy, making them ideal for interconsistency studies of on-orbit sensors. The recent development of automated sites to collect the in situ data has led to an increase in the available number of datasets for sensor calibration. The current work describes the Radiometric Calibration Network (RadCalNet) that is an effort to provide automated surface and atmosphere in situ data as part of a network including multiple sites for the purpose of optical imager radiometric calibration in the visible to shortwave infrared spectral range. The key goals of RadCalNet are to standardize protocols for collecting data, process to top-of-atmosphere reflectance, and provide uncertainty budgets for automated sites traceable to the international system of units. RadCalNet is the result of efforts by the RadCalNet Working Group under the umbrella of the Committee on Earth Observation Satellites (CEOS) Working Group on Calibration and Validation (WGCV) and the Infrared Visible Optical Sensors (IVOS). Four radiometric calibration instrumented sites located in the USA, France, China, and Namibia are presented here that were used as initial sites for prototyping and demonstrating RadCalNet. All four sites rely on collection of data for assessing the surface reflectance as well as atmospheric data over that site. The data are converted to top-of-atmosphere reflectance within RadCalNet and provided through a web portal to allow users to either radiometrically calibrate or verify the calibration of their sensors of interest. Top-of-atmosphere reflectance data with associated uncertainties are available at 10 nm intervals over the 400 nm to 1000 nm spectral range at 30 min intervals for a nadir-viewing geometry. An example is shown demonstrating how top-of-atmosphere data from RadCalNet can be used to determine the interconsistency between two sensors.
An overview of AVIRIS-NG airborne hyperspectral science campaign over India
The first phase of an airborne science campaign has been carried out with the Airborne Visible/Infrared Imaging Spectrometer Next Generation (AVIRIS-NG) imaging spectrometer over 22,840 sq. km across 57 sites in India during 84 days from 16 December 2015 to 6 March 2016. This campaign was organized under the Indian Space Research Organisation (ISRO) and National Aeronautics and Space Administration (NASA) joint initiative for HYperSpectral Imaging (HYSI) programme. To support the campaign, synchronous field campaigns and ground measurements were also carried out over these sites spanning themes related to crop, soil, forest, geology, coastal, ocean, river water, snow, urban, etc. AVIRIS-NG measures the spectral range from 380 to 2510 nm at 5 nm sampling with a ground sampling distance ranging from 4 to 8 m and flight altitude of 4–8 km. On-board and ground-based calibration and processing were carried out to generate level 0 (L0) and level 1 (L1) products respectively. An atmospheric correction scheme has been developed to convert the measured radiances to surface reflectance (level 2). These spectroscopic signatures are intended to discriminate surface types and retrieve physical and compositional parameters for the study of terrestrial, aquatic and atmospheric properties. The results from this campaign will support a range of objectives, including demonstration of advanced applications for societal benefits, validation of models/techniques, development of state-of-the-art spectral libraries, testing and refinement of automated tools for users, and definition of requirements for future space-based missions that can provide this class of measurements routinely for a range of important applications.
Atmospheric Correction Inter-Comparison eXercise
The Atmospheric Correction Inter-comparison eXercise (ACIX) is an international initiative with the aim to analyse the Surface Reflectance (SR) products of various state-of-the-art atmospheric correction (AC) processors. The Aerosol Optical Thickness (AOT) and Water Vapour (WV) are also examined in ACIX as additional outputs of AC processing. In this paper, the general ACIX framework is discussed; special mention is made of the motivation to initiate the experiment, the inter-comparison protocol, and the principal results. ACIX is free and open and every developer was welcome to participate. Eventually, 12 participants applied their approaches to various Landsat-8 and Sentinel-2 image datasets acquired over sites around the world. The current results diverge depending on the sensors, products, and sites, indicating their strengths and weaknesses. Indeed, this first implementation of processor inter-comparison was proven to be a good lesson for the developers to learn the advantages and limitations of their approaches. Various algorithm improvements are expected, if not already implemented, and the enhanced performances are yet to be assessed in future ACIX experiments.
Evaluating Environmental Weathering Effects on White Portland Cement using Hyperspectral Reflectance Analysis
Cement is a primary binding material that plays a crucial role in construction. This study used hyperspectral reflectance analysis to investigate the spectral reflectance characteristics of White Portland Cement (WPC) exposed to environmental conditions. The observation was made over a 150-day period. The reflectance of cement samples was measured using a spectroradiometer that captures the reflectance value of 994 discrete wavelength range from 339.3 nm to 2516.8 nm. These data were processed to calculate differential and double differential curves. Statistical techniques like moving average and smooth spline interpolation were employed to remove local fluctuations and observe the changing trends in reflectance over time. The study results provide insight into the temporal changes in the surface properties of WPC. The analysis also revealed significant changes in reflectance over time. The mean reflectance decreased from 90.397 on Day 0 to 83.092 on Day 150, showing surface degradation with time. However, the standard deviation of the reflectance increased initially from 7.318 on Day 0 to 7.766 on Day 30, then stabilized at 6.763 by Day 120. It was further increased to 7.496 by Day 150. The differential and double differential curves also show significant variations. The differential reflectance attained its maximum value of 0.199 on Day 60, and the double differential reflected maximum changes at 0.031 on Day 60. These results highlight the dynamic interaction between WPC surfaces and various environmental factors. The observed decrease in reflectance over time suggests surface ageing and potential material degradation, as reduced reflectance may indicate increased porosity or surface roughness due to environmental exposure. Overall, this study can offer a valuable tool for assessing cement-based materials' long-term durability and performance in the construction industry.