Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
83
result(s) for
"surface severe plastic deformation"
Sort by:
Effect of Surface Nanocrystallization on Wear Behavior of Steels: A Review
by
Morshed-Behbahani, Khashayar
,
Nasiri, Ali
,
Farhat, Zoheir
in
Alloys
,
Carbon
,
Chemical composition
2024
Ferrous alloys, particularly steels, form a specialized class of metallic materials extensively employed in industrial sectors to combat deterioration and failures caused by wear. Despite their commendable mechanical properties, steels are not immune to wear-induced degradation. In this context, surface nanocrystallization (SNC) technologies have carved a distinct niche for themselves by enabling the nanostructuring of the surface layer (with grain sizes < 100 nm). This process enhances overall mechanical properties to a level desirable for wear resistance while preserving the chemical composition. Existing literature has consistently highlighted the efficacy of various SNC methods in improving the wear resistance of ferrous alloys, positioning SNC as a promising tool to extend materials’ service life in practical applications. This review provides a comprehensive examination of the SNC techniques employed in surface treatment of ferrous alloys and their impact on wear behavior. We delved into the underlying mechanisms governing wear in SNC-treated Fe-based alloys and concluded with a discussion on current challenges and future perspectives in this evolving field.
Journal Article
Nanomaterials by severe plastic deformation: review of historical developments and recent advances
by
Blank, Vladimir D.
,
Popova, Elena N.
,
Toth, Laszlo S.
in
Abbreviations
,
Anvils
,
Biocompatibility
2022
Severe plastic deformation (SPD) is effective in producing bulk ultrafine-grained and nanostructured materials with large densities of lattice defects. This field, also known as NanoSPD, experienced a significant progress within the past two decades. Beside classic SPD methods such as high-pressure torsion, equal-channel angular pressing, accumulative roll-bonding, twist extrusion, and multi-directional forging, various continuous techniques were introduced to produce upscaled samples. Moreover, numerous alloys, glasses, semiconductors, ceramics, polymers, and their composites were processed. The SPD methods were used to synthesize new materials or to stabilize metastable phases with advanced mechanical and functional properties. High strength combined with high ductility, low/room-temperature superplasticity, creep resistance, hydrogen storage, photocatalytic hydrogen production, photocatalytic CO
2
conversion, superconductivity, thermoelectric performance, radiation resistance, corrosion resistance, and biocompatibility are some highlighted properties of SPD-processed materials. This article reviews recent advances in the NanoSPD field and provides a brief history regarding its progress from the ancient times to modernity.
Abbreviations: ARB: Accumulative Roll-Bonding; BCC: Body-Centered Cubic; DAC: Diamond Anvil Cell; EBSD: Electron Backscatter Diffraction; ECAP: Equal-Channel Angular Pressing (Extrusion); FCC: Face-Centered Cubic; FEM: Finite Element Method; FSP: Friction Stir Processing; HCP: Hexagonal Close-Packed; HPT: High-Pressure Torsion; HPTT: High-Pressure Tube Twisting; MDF: Multi-Directional (-Axial) Forging; NanoSPD: Nanomaterials by Severe Plastic Deformation; SDAC: Shear (Rotational) Diamond Anvil Cell; SEM: Scanning Electron Microscopy; SMAT: Surface Mechanical Attrition Treatment; SPD: Severe Plastic Deformation; TE: Twist Extrusion; TEM: Transmission Electron Microscopy; UFG: Ultrafine Grained
This article comprehensively reviews recent advances on development of ultrafine-grained and nanostructured materials by severe plastic deformation and provides a brief history regarding the progress of this field.
Journal Article
Enhancement of the Microstructure and Fatigue Crack Growth Performance of Additive Manufactured Titanium Alloy Parts by Laser-Assisted Ultrasonic Vibration Processing
by
Ojo, Sammy A.
,
Manigandan, Kannan
,
Gyekenyesi, Andrew L.
in
Additive manufacturing
,
Characterization and Evaluation of Materials
,
Chemistry and Materials Science
2024
Post-processing techniques can efficiently improve the surface quality, address microstructural defects, and optimize mechanical properties in additively manufactured parts. Surface severe plastic deformation processes such as ultrasonic nanocrystal surface modification (UNSM) integrated with localized laser heating were explored to enhance the surface properties, microstructure as well as the fatigue crack growth properties (FCG) in both directions of built. We successfully induced greater plasticity flow and achieved beneficial refinement of the surface grain structure by precisely controlling the heat and impact energies during surface treatment process. The LA-UNSM process, with the parameters utilized in this study considerably decreased the FCG rates of treated samples, when compared to samples without surface treatment. Improved fatigue crack growth properties along vertical and horizontal orientations after the post-process treatment were attributed to the induced-microstructural changes, improved surface quality, induced compressive residual stresses through gradient structure deformation layer that was prepared on the surface of the material. The fractographic analysis revealed that the cracks mostly originated from the pores in the as-produced state. This observation shows a clear correlation between the surface treatment performed and a substantial improvement in fatigue crack growth resistance.
Journal Article
Biomaterial types, properties, medical applications, and other factors: a recent review
by
Agrawal, Reeya
,
Singh, Sangeeta
,
Kumar, Anjan
in
Antifouling substances
,
Antiinfectives and antibacterials
,
Biocompatibility
2023
Biomaterial research has been going on for several years, and many companies are heavily investing in new product development. However, it is a contentious field of science. Biomaterial science is a field that combines materials science and medicine. The replacement or restoration of damaged tissues or organs enhances the patient’s quality of life. The deciding aspect is whether or not the body will accept a biomaterial. A biomaterial used for an implant must possess certain qualities to survive a long time. When a biomaterial is used for an implant, it must have specific properties to be long-lasting. A variety of materials are used in biomedical applications. They are widely used today and can be used individually or in combination. This review will aid researchers in the selection and assessment of biomaterials. Before using a biomaterial, its mechanical and physical properties should be considered. Recent biomaterials have a structure that closely resembles that of tissue. Anti-infective biomaterials and surfaces are being developed using advanced antifouling, bactericidal, and antibiofilm technologies. This review tries to cover critical features of biomaterials needed for tissue engineering, such as bioactivity, self-assembly, structural hierarchy, applications, heart valves, skin repair, bio-design, essential ideas in biomaterials, bioactive biomaterials, bioresorbable biomaterials, biomaterials in medical practice, biomedical function for design, biomaterial properties such as biocompatibility, heat response, non-toxicity, mechanical properties, physical properties, wear, and corrosion, as well as biomaterial properties such surfaces that are antibacterial, nanostructured materials, and biofilm disrupting compounds, are all being investigated. It is technically possible to stop the spread of implant infection.
Journal Article
Advances in Magnesium-Based Biomaterials: Strategies for Enhanced Corrosion Resistance, Mechanical Performance, and Biocompatibility
2025
Magnesium (Mg) and its alloys have emerged as promising biomaterials for orthopedic and cardiovascular applications, thanks to their good biodegradability, biocompatibility, and mechanical properties close to that of natural bone. However, the rapid degradation of Mg in physiological environments and limited mechanical performance tend to compromise the structural integrity of implants before healing is complete. These drawbacks have been heavily limiting the application of Mg and its alloys as biomaterials. In this paper, we review recent advancements in two common solutions to these problems: alloying and surface treatment, with a focus on controlling the corrosion resistance, mechanical performance, and biocompatibility of Mg-based biomaterials.
Journal Article
Corrosion property of Al alloys subjected to surface severe plastic deformation: a review
2023
Purpose
This study aims to discuss the influences of surface severe plastic deformation (S2PD) on the electrochemical corrosion, pitting corrosion, intergranular corrosion, stress corrosion cracking of aluminum (Al) alloys and attempt to correlate the microstructural/compositional changes with the performances.
Design/methodology/approach
This study provides a novel gradient design of structure/composition caused by S2PD for the purpose of enhancing Al alloys’ corrosion resistance.
Findings
S2PD has a significant effect on corrosion behavior of Al alloys through tuning the grain size, residual stress, composition, grain boundary phase and second phase particle distribution.
Originality/value
Although Al alloys are known to form a protective Al2O3 film, corrosion is a major challenge for the longevity of Al structures across numerous industries, especially for the infrastructures made of high-strength Al alloys. Traditional strategies of improving corrosion resistance of Al alloys heavily relied on alloying and coatings. In this review, gradient design of structure/composition caused by S2PD provides a novel strategy for corrosion protection of Al alloys, especially in the enhancement of localized corrosion resistance.
Journal Article
Effects of Surface Severe Plastic Deformation on the Mechanical Behavior of 304 Stainless Steel
by
Li, Tingchao
,
Li, Dalei
,
Lu, Jinsheng
in
304 stainless steel
,
abrasive waterjet peening (AWJP)
,
Alloys
2020
In this study, two innovative surface severe plastic deformation (SSPD) methods, namely abrasive waterjet peening (AWJP) and ultrasonic nanocrystal surface modification (UNSM), were applied to a 304 stainless steel to improve the mechanical behavior. The surface roughness, microstructure, residual stress, hardness, and tensile mechanical properties of the alloy after the two SSPD treatments were studied systematically. The results show that both the AWJP and UNSM treatments have greatly positive effects on the mechanical-properties improvements by successfully introducing a hardening layer. Especially the UNSM-processed specimen possesses the most outstanding comprehensive mechanical properties (high strength with the comparable ductility). The yield strength with the UNSM treatment is 443 MPa, corresponding to the 109% and 19% improvements, as compared to that of the base (212 MPa) and AWJP-treated specimens (372 MPa). The results can be attributed to a much thicker hardening layer (about 500 μm) and a better surface integrity with lower roughness (Ra: 0.10 μm) formed by the UNSM technique.
Journal Article
Effects of residual stress on the mechanical properties of copper processed using ultrasonic-nanocrystalline surface modification
by
Baek, Seung Mi
,
Lee, Sunghak
,
Amanov, Auezhan
in
microstructure
,
residual stress
,
Surface severe plastic deformation
2019
Effects of surface grain refinement and residual stress on the local and global properties of pure Cu processed using ultrasonic nanocrystalline surface modification (UNSM) was investigated. To distinguish each contribution to the local hardness and global tensile properties of the UNSM treated Cu, a stress-relief specimen of the same microstructure as the UNSM treated one was produced by low-temperature annealing after the UNSM treatment. The distinct contributions of residual stress and surface grain refinement to the tensile property of UNSM treated Cu were determined and discussed.
Journal Article
Integral sheet metal design via severe plastic deformation – state of the art and future challenges
2014
The innovative forming processes Linear Flow Splitting (LFS) and Linear Bend Splitting (LBS) were developed to facilitate the continuous production of branched profiles with tailored sheet thickness by inducing severe plastic strain. In contrast to most SPD processes the stress state in LFS and LBS is very complex and plastic deformation is confined to limited volumes which results in steep strain gradients and consequently ultrafine grained (UFG) gradient microstructures. Even though the processes have been commercialized, the increased lightweight potential that originates from the local grain refinement remains mostly idle since it is neither fully understood nor easily assessable yet. The present work shows the state of the art for the LFS and LBS processes and compares the microstructures and distribution of mechanical properties for different steels processed with different LFS parameters. The data is used to identify characteristic manufacturing induced properties that are insensitive to processing parameters. Based on the experimental results a material flow model for the processing zone is proposed which is discussed with respect to the current understanding of plasticity at severe strains.
Journal Article
Effects of residual stress on the mechanical properties of copper processed using ultrasonic-nanocrystalline surface modification
by
Baek, Seung Mi
,
Lee, Sunghak
,
Amanov, Auezhan
in
microstructure
,
residual stress
,
Surface severe plastic deformation
2019
Effects of surface grain refinement and residual stress on the local and global properties of pure Cu processed using ultrasonic nanocrystalline surface modification (UNSM) was investigated. To distinguish each contribution to the local hardness and global tensile properties of the UNSM treated Cu, a stress-relief specimen of the same microstructure as the UNSM treated one was produced by low-temperature annealing after the UNSM treatment. The distinct contributions of residual stress and surface grain refinement to the tensile property of UNSM treated Cu were determined and discussed.
The contributions of surface grain refinement and compressive residual stress on the enhanced local and global strengths of the UNSM-processed Cu were estimated as 80% and 20%, respectively.
Report