Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
32,968 result(s) for "symbiotic"
Sort by:
Microbiota in different digestive tract of paddlefish
Paddlefish has high economic and ecological value. In this study, microbial diversity and community structure in intestine, stomach, and mouth of paddlefish were detected using high-throughput sequencing. The results showed that the diversity and richness indices decreased along the digestive tract, and significantly lower proportion of those were observed in intestine. Firmicutes, Bacteroidetes and Proteobacteria were the dominant phyla. In top 10 phyla, there was no significant difference in mouth and stomach. But compared with intestine, there were significant differences in 8 of the 10 phyla, and Firmicutes and Bacteroidetes increased significantly, while Proteobacteria decreased significantly. There was no dominant genus in mouth and stomach, but Clostridium_sensu_stricto_1 and uncultured_bacterium_o_Bacteroidales was predominant in intestine. In conclusion, the species and abundance of microbiota in the mouth and stomach of paddlefish were mostly the same, but significantly different from those in intestine. Moreover, there was enrichment of the dominant bacteria in intestine.
Correction: Metagenomics analysis reveals features unique to Indian distal gut microbiota
[This corrects the article DOI: 10.1371/journal.pone.0231197.].[This corrects the article DOI: 10.1371/journal.pone.0231197.].
X-Ray Emissions from Accreting White Dwarfs: A Review
Interacting binaries in which a white dwarf accretes material from a companion-cataclysmic variables (CVs) in which the mass donor is a Roche-lobe filling star on or near the main sequence, and symbiotic stars in which the mass donor is a late type giant-are relatively commonplace. They display a wide range of behaviors in the optical, X-rays, and other wavelengths, which still often baffle observers and theorists alike. Here I review the existing body of research on X-ray emissions from these objects for the benefits of both experts and newcomers to the field. I provide introductions to the past and current X-ray observatories, the types of known X-ray emissions from these objects, and the data analysis techniques relevant to this field. I then summarize of our knowledge regarding the X-ray emissions from magnetic CVs, non-magnetic CVs and symbiotic stars, and novae in eruption. I also discuss space density and the X-ray luminosity functions of these binaries and their contribution to the integrated X-ray emission from the Galaxy. I then discuss open questions and future prospects.
Rethreading the needle: A novel molecular index of soil health
Soil health relies on the actions and interactions of an abundant and diverse biological community. Current soil health assessments rely heavily on a suite of soil biological, chemical, and physical indicators, often excluding molecular information. Soil health is critical for sustainable agricultural production, and a comprehensive understanding of how microbial communities provide ecosystem services can help guide management practices. To explore the role of microbial function in soil health, 536 soil samples were collected from 26 U.S. states, representing 52 different crops and grazing lands, and analyzed for various soil health indicators. The bacterial functional profile was characterized using 16S ribosomal RNA gene sequencing paired with PICRUSt2 to predict metagenome functions. Functional data were used as predictors in eXtreme Gradient Boosting (XGBoost), a powerful machine learning algorithm, and enzymes important to soil health indicators were compiled into a Molecular Index of Soil Health (MISH). The overall MISH score significantly correlated with non-molecular measures of soil health and management practice adoption. Additionally, several new enzymes were identified as potential targets to better understand microbial mediation of soil health. This low-cost, DNA-based approach to measuring soil health is robust and generalizable across climates.